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Abstract

In assisted mechanical ventilation, patients share the work of breathing with a mechanical
ventilator. Medical research has repeatedly emphasized the need to monitor the patient’s
own respiratory effort under these conditions, but there is currently no noninvasive
measurement modality that can achieve this. Surface electromyographic (EMG)
measurements of the respiratory muscles have recently been proposed as a potential
solution, but several critical signal processing challenges must be overcome to achieve a
reliable clinical monitoring methodology. Crosstalk from nearby muscles, including the
heart, represents a challenge to measurement fidelity. Moreover, electromyographic
measurements by themselves can only indicate the relative degree of muscle activation but
not the absolute values of pressure generated by the respiratory muscles. In this thesis,
several contributions towards the solution of these problems are made.
Firstly, a new, comprehensive mathematical model of surface electromyography,

muscular force generation, and motor unit pool organization is developed and presented.
The model significantly extends previously available models in multiple regards; particular
care is taken to model the interrelated distributions of muscle fiber parameters in a way that
ensures realistic electro-mechanical macroscopic muscle properties. This model is then
used for the performance evaluation of a newly proposed convolutive blind source separation
method based on the TRINICON framework (TRIple-N Independent component analysis
for CONvolutive mixtures), which has been proposed for separating the activity of
inspiratory, expiratory, and cardiac activity in multi-channel respiratory surface EMG
recordings. (The derivation of the source separation algorithm itself was not part of this
thesis.) No ground truth measurements exist for this separation problem, and thus,
quantitative evaluation with real measurements is infeasible.
Secondly, the problem of cardiac artifact removal from single-channel surface EMG

recordings of the respiratory muscles is addressed comprehensively. Due to the vicinity of
the recording electrodes to the heart, these measurements suffer from unusually strong
cardiac artifacts, which are nontrivial to remove. Many algorithms of all kinds have been
proposed in the literature for this purpose. Here, two contributions are made to the solution
of this problem. On the one hand, a novel, model-based, probabilistic method for removing
cardiac artifacts from single-channel recordings is proposed, called probabilistic adaptive
template subtraction (PATS). The method is based on a parametric model of the beat-to-beat
variability of heartbeat morphology while not assuming any restrictive model of the
morphology itself. A fully probabilistic inference procedure is proposed, based on
maximum likelihood estimation and a bank of Kalman filters and smoothers. On the other
hand, a comprehensive evaluation framework for algorithms for cardiac artifact removal is
developed. Algorithms are evaluated both on real measurements obtained in a dedicated
study with healthy participants, conducted solely for this purpose, and on synthetic signals.
To comprehensively assess algorithm performance, four different performance measures
are considered. The newly proposed algorithm, PATS, performs best among a group of
previously proposed algorithms in recovering the raw, uncontaminated EMG signals.
Thirdly, a purely theoretical contribution to the problem of regression under covariate

shift (i.e., differing training and target distributions), concept drift (i.e., a time-varying
system), and model mismatch is made. This triad of challenges is arguably very common,
yet surprisingly little research has been devoted to a principled solution. Here, based on a
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probabilistic model of concept drift, a fully probabilistic solution to this problem is
presented. As parts of this solution, new, weighted versions of the standard linear Kalman
filter and smoother are derived, and an importance-weighted hyperparameter estimation
scheme based on prediction error minimization is proposed. Numerical examples
demonstrate that the proposed approach can be employed to successfully perform
regression in the face of covariate shift, concept drift, and model mismatch.
Finally, utilizing the aforementioned statistical developments, a new method for estimat-

ing the pressure 𝑃mus generated by the respiratorymuscles of patients under assistedmechan-
ical ventilation is presented. The proposed method performs sensor fusion and combines
the pneumatic measurements provided by a mechanical ventilator with respiratory surface
EMG measurements. To this end, models of respiratory mechanics, of the relationship be-
tween respiratory EMG measurements and 𝑃mus, and of the dynamic time course of 𝑃mus
are combined. Unlike many previously proposed approaches, the method does not rely on
any special identification maneuvers being performed and can be applied during normal
ventilation. In order to improve estimation results, importance weighting and an automatic
delay estimation scheme are exploited. Based on an evaluation on eleven recordings from
intensive care patients, the proposed algorithm estimates 𝑃mus with a mean absolute devi-
ation of just 0.79mbar, a rank correlation coefficient of 0.74, and 95% limits of agreement
of −2.49mbar and 2.65mbar. It thus represents an attractive solution for future entirely
noninvasive monitoring of respiratory effort in mechanically ventilated patients.
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Zusammenfassung

Bei der unterstützten künstlichen Beatmung teilen sich die Patienten die Atemarbeit mit ei-
nemBeatmungsgerät. Diemedizinische Forschung hatwiederholt die Notwendigkeit betont,
die eigene Atemarbeit des Patienten unter diesen Bedingungen zu überwachen, aber es gibt
derzeit keine nicht-invasive Messmethode, die dies leisten kann. Kürzlich wurden elektro-
myografische Oberflächenmessungen (EMG) der Atemmuskulatur als mögliche Lösung vor-
geschlagen, doch müssen mehrere kritische Herausforderungen bei der Signalverarbeitung
überwunden werden, um eine zuverlässige klinische Überwachungsmethode zu entwickeln.
Das Übersprechen von benachbarten Muskeln, einschließlich des Herzens, stellt eine Her-
ausforderung für die Messgenauigkeit dar. Darüber hinaus können elektromyographische
Messungen nur den relativen Grad der Muskelaktivierung anzeigen, nicht aber die absolu-
ten Werte des von den Atemmuskeln erzeugten Drucks. In dieser Arbeit werden mehrere
Beiträge zur Lösung dieser Probleme geleistet.
Erstens wird ein neues, umfassendes mathematisches Modell der Oberflächenelektro-

myographie, der Muskelkrafterzeugung und der Organisation von motorischen Einheiten
entwickelt und vorgestellt. Das Modell erweitert die bisher verfügbaren Modelle in mehr-
facher Hinsicht; besondere Sorgfalt wurde darauf verwendet, die miteinander verknüpften
Verteilungen derMuskelfaserparameter so zu modellieren, dass realistische elektromechani-
sche makroskopische Muskeleigenschaften gewährleistet sind. Dieses Modell wird dann für
die Leistungsbewertung einer neu vorgeschlagenen konvolutiven blinden Quellentrennungs-
Methode verwendet, die auf demTRINICON-Framework (TRIple-N Independent component
analysis for CONvolutive mixtures) basiert, das für die Trennung der Aktivität von inspi-
ratorischer, exspiratorischer und kardiogene Aktivität in mehrkanaligen respiratorischen
Oberflächen-EMG-Aufzeichnungen vorgeschlagen wurde. (Die Herleitung des Quellentren-
nungsalgorithmus selbst war nicht Teil dieser Arbeit.) Für dieses Trennungsproblem gibt
es keine Referenzmessungen, so dass eine quantitative Auswertung mit realen Messungen
nicht möglich ist.
Zweitens wird das Problem der Entfernung kardiogener Artefakte aus einkanaligen Ober-

flächen-EMG-Aufzeichnungen der Atemmuskulatur umfassend behandelt. Aufgrund der
Nähe der Aufzeichnungselektroden zum Herzen leiden diese Messungen unter ungewöhn-
lich starken kardiogenen Artefakten, deren Entfernung nicht trivial ist. Zu diesem Zweck
wurden in der Literatur zahlreiche Algorithmen aller Art vorgeschlagen. Hier werden zwei
Beiträge zur Lösung dieses Problems geleistet. Zum einen wird ein neuartiges, modellba-
siertes, probabilistisches Verfahren zur Entfernung kardiogener Artefakte aus einkanali-
gen Aufzeichnungen vorgeschlagen, das als probabilistische adaptive Muster-Subtraktion
bezeichnet wird. Die Methode basiert auf einem parametrischen Modell der Variabilität
der Herzschlagmorphologie zwischen aufeinander folgenden Herzschlägen, ohne dass ein
restriktives Modell der Morphologie selbst vorausgesetzt wird. Es wird ein vollständig proba-
bilistisches Inferenzverfahren vorgeschlagen, das auf einerMaximum-Likelihood-Schätzung
und einem Ensemble von Kalman-Filtern und -Glättern beruht. Auf der anderen Seite wird
ein umfassendes Evaluationsframework für Algorithmen zur Entfernung kardiogener Arte-
fakte entwickelt. Die Algorithmen werden sowohl an realen Messungen, die in einer eigens
für diesen Zweck durchgeführten Studie mit gesunden Teilnehmern gewonnen wurden, als
auch an synthetischen Signalen bewertet. Um die Leistung der Algorithmen umfassend zu
bewerten, werden vier verschiedene Leistungsmaße berücksichtigt. Der neu vorgeschlagene
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Algorithmus schneidet bei der Wiederherstellung der unverfälschten EMG-Rohsignale am
besten von allen zuvor vorgeschlagenen Algorithmen ab.
Drittens wird ein rein theoretischer Beitrag zum Problem der Regression unter Kovaria-

tenverschiebung (d.h. unterschiedliche Trainings- und Zielverteilungen), Konzeptdrift (d.h.
ein zeitlich veränderliches System) undModellfehlern geleistet. Dieses Dreigespann von Her-
ausforderungen ist praktisch häufig anzutreffen, aber erstaunlich wenig Forschung wurde
bisher einer prinzipiellen Lösung gewidmet. Hier wird auf der Grundlage eines probabilisti-
schenModells des Konzeptdrifts eine vollständig probabilistische Lösung für dieses Problem
vorgestellt. Als Teil dieser Lösung werden neue, gewichtete Versionen des standardmäßigen
linearen Kalman-Filters und der -Glätters abgeleitet und ein Schema zur Schätzung von
Hyperparametern mit Wichtigkeitsgewichtung vorgeschlagen, das auf der Minimierung von
Vorhersagefehlern basiert. Numerische Beispiele zeigen, dass der vorgeschlagene Ansatz
zur erfolgreichen Durchführung von Regressionen angesichts von Kovariatenverschiebung,
Konzeptdrift und Modellfehlern eingesetzt werden kann.
Schließlich wird unter Verwendung der oben erwähnten statistischen Entwicklungen ei-

ne neue Methode zur Schätzung des Drucks 𝑃mus vorgestellt, der von den Atemmuskeln
von Patienten unter unterstützter künstlicher Beatmung erzeugt wird. Die vorgeschlage-
ne Methode führt eine Sensorfusion durch und kombiniert die von einem Beatmungsgerät
gelieferten pneumatischen Messungen mit oberflächlichen EMG-Messungen der Atemmus-
keln. Zu diesem Zweck werden Modelle der Atemmechanik, der Beziehung zwischen EMG-
Messungen der Atemmuskulatur und 𝑃mus sowie des dynamischen Zeitverlaufs von 𝑃mus
kombiniert. Im Gegensatz zu vielen zuvor vorgeschlagenen Ansätzen ist die Methode nicht
auf die Durchführung spezieller Identifikationsmanöver angewiesen und kann während der
normalen Beatmung angewendet werden. Um die Schätzergebnisse zu verbessern, werden
eine Wichtigkeitsgewichtung und eine Methode zur automatischen Identifikation von Si-
gnalverzögerungen verwendet. Basierend auf einer Auswertung anhand von elf Aufnahmen
von Intensivpatienten schätzt der vorgeschlagene Algorithmus 𝑃mus mit einer mittleren ab-
soluten Abweichung von nur 0.79mbar, einem Rangkorrelationskoeffizienten von 0, 74 und
95%-igen Übereinstimmungsgrenzen von −2.49mbar und 2.65mbar. Die vorgeschlagene
Methode stellt somit eine attraktive Lösung für die zukünftige nicht-invasive Überwachung
der Atemanstrengung bei künstlich beatmeten Patienten dar.
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Foreword

In 2014, while working on my master’s thesis at the Dräger company, I was working with
Marcus Eger on signal processing for electromyographic (EMG) measurements. We

wanted to develop algorithms for separating the activity of different respiratory muscles in
the measured signals. After a while, I realized that validation was a crucial issue: there is no
way of knowing which muscles contribute how much activity, so how would I know
whether my algorithm worked well? I started working on a simple EMG simulator for the
validation. When Marcus asked me how long I believed it would take to finish my work on
the simulator, I replied, confidently, “two weeks.” About a month later, Marcus asked me
again, and I — still only slightly more knowledgeable about EMG modeling than four
weeks ago — replied, “Well, it was a bit more complex than I thought, but from here it will
probably take me two more weeks.” I ended up writing my whole master’s thesis about
EMG signal modeling (instead of source separation algorithms), and a significant part of my
Ph.D. project would still be concerned with this topic. This was my first serious academic
adventure, and I thoroughly enjoyed it.
Already while working on my master’s thesis, I knew that I wanted to continue doing

research afterwards. I had also realized that in the research unit at Dräger in Lübeck, they
had all the ingredients of a perfect workplace: very kind and experienced colleagues, thrilling
research problems — where thrilling for me meant "technically challenging and societally
relevant" — and a beautiful city close to the sea. Unfortunately, no Ph.D. positions were
available at the research unit at the time, and so I started looking for other opportunities. It
turned out that, at exactly that time, Philipp Rostalski, who later becamemyPh.D. supervisor,
was founding his new institute at the University of Lübeck and was looking for his first Ph.D.
student to work on an EMG-based mechanical ventilation project with the Dräger research
unit! We met, quickly agreed that it was the perfect match for both of us, and so I became
a Ph.D. student at the university on the same day the institute was founded. I could hardly
have been more fortunate.
The six-and-a-half years of which this thesis is a product were, above all, rich. Participating

in setting up the new institute was both exciting and challenging. Initially, we were just three
people: Philipp Rostalski, as my thesis supervisor, Christian Herzog, as our first postdoc, and
me. It felt like a startup. During the first week, I brought my coffee machine from home.
(At the time of writing, several thousands of cups of coffee later, it’s still there and running.)
The following years saw the institute quickly grow to over twenty researchers; it became
a vibrant space for research at the intersection between theory and practical applications.
Besides research, the years filled with conferences, workshops, summer schools, student
supervision, teaching duties, administering the institute’s IT infrastructure for a while, a
long-distance relationship, two moves to different cities, music festivals, board game nights,
and a global pandemic. Above all, however, they were filled with wonderful people.
First and foremost, I am grateful to Philipp, who succeeded in striking a very fine balance

between entrusting me with lots of responsibilities and freedom to explore, while also
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providing honest and critical feedback where necessary. He taught me how to write well,
work rigorously, not take any shortcuts, and not take myself too seriously. He always
supported me, and I consider him amentor in the most flattering sense of the word.
None of the work presented in the following pages would exist, were it not for the long-

term financial support of the IME provided initially by the Dräger company, for which I am
grateful. In addition, Marcus Eger and Thomas Handzsuj were better scientific collaborators
than anyone could have hoped for. (They are also simply wonderful people.)
Most of my daily work hours were spent in the company of my wonderful colleages at the

IME, to whom I am immensely grateful for nurturing a kind and joyful atmosphere. Jan
Graßhoff, Christian Herzog, Ayla Nawaz, Felix Vollmer, Georg Männel, Julia Sauer, and
Anjes Kiencke all feature prominently in fond memories of my (early) years at the IME. I
am especially grateful to Jan and Julia, with whom I had the great pleasure of collaborating
very closely for most of those years. In Jan and Ayla, I also found wonderful virtual thesis
writing company during the COVID lockdown. Working on something together is just much
more fun than doing it alone.
I was also blessed with many wonderful external collaborators throughout the course of

my work at the IME. Being able to jump on an existing project on blind source separation
with Herbert Buchner was a great start to my Ph.D. Dirk Schädler and Tobias Becher of
the UKSH Kiel taught me much about mechanical ventilation, and about the challenges
involved in analyzing complex, real-world intensive care data. Later on, I benefitted greatly
from scientific visits to the Lund Center for Control of Complex engineering systems (LCCC)
and the group of Madeleine Lowery at University College Dublin. All of these interactions
shaped who I became as a scientist.
One does, of course, not need to be a scientist or work at a university to contribute to the

genesis of a Ph.D. thesis. My father taught me to be thorough and precise, and not to be
satisfied with superficial explanations. My mother nourished a love of play and adventure.
Both equipped me with a broad sense of optimism and a deep-seated trust that things will
work out in the end, which helped me through some of the more trying phases of this Ph.D.
Sarah’s andmy flatmates in Hildesheim—Nicklas, Julie, Aaron, and Yannik—succeeded,

against all odds, in making a year otherwise marked by thesis writing and social distancing
one of the best years of my life.
Throughout this whole long and winded journey, Sarah supported me and kept me

grounded, made me forget about academic struggles in the evening, accepted weird and
often anti-social working hours without complaint, and regularly reminded me that, after
all, research really isn’t that important.
To all of you, I am immensely grateful.

— Eike Petersen, July 2023
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Mathematical Notation

One gains many insights during the writing of a technical Ph.D. thesis, one of
them being: notation is a nightmare. Notation, like so many other things, can only be

understood and judged given a context, which inevitably varies from section to section, from
writer to reader, and — given the interdisciplinary content of this thesis — from reader to
reader. I gave my best effort to use clear and consistent notation throughout this thesis, yet
I am certain to have fallen short. For any ambiguous and confusing choices, I apologize to
the reader in advance.
Matrices, like 𝐴 and 𝐵, will generally be represented by uppercase variables, while

vectors, like 𝑥 and 𝑦, will be denoted by lowercase letters. Physical quantities such as
electromyographic signals (EMG), lung volume (𝑉), and various pressures (𝑃aw, 𝑃es) are an
important exception from this rule: they will be denoted as illustrated, but should be
understood as (usually discrete-time) time-varying signals, i.e., vectors. Continuously
time-varying quantities will be denoted as 𝑥(𝑡), whereas individual samples of discrete-time
quantities will be denoted as 𝑥𝑘, and the index 𝑘 will generally be reserved for the sample
index. Sometimes, the short-hand notation 𝑥3∶7 will be used to denote 𝑥𝑘 for 𝑘 = 3,… , 7.
Loop variables that change as a function of the iteration will sometimes be denoted as 𝑥(𝓁)
to distinguish this from sample, row, and column indexing. Finally,𝒩(𝜇𝑥,Σ𝑥) will often be
used to denote a normal distribution of a variable 𝑥 with mean 𝜇𝑥 and covariance
matrix Σ𝑥; sometimes, the alternative notation 𝒩(𝑥 ∣ 𝜇𝑥,Σ𝑥) is used to clarify that the
distribution of the variable 𝑥 is meant.
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Chapter 1

Introduction

It makes me so happy. To be at the beginning again,
knowing almost nothing.

(Tom Stoppard, Arcadia)
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1.1 Key contributions and outline of this thesis

In early 2020, the then-emerging COVID-19 epidemic caused a surge
of public interest in a field that is usually much less prominently discussed: mechanical

ventilation. Under normal circumstances, this branch of medicine receives little public
attention, not because it is any less relevant, but rather because it is an old field of medical
practice and may be perceived as less exciting than more recently developed fields of
inquiry. However, significant advances to the tremendous benefit of mechanically
ventilated patients have been made in recent decades, and yet there is still much room for
high-impact clinical improvements, making it an exciting research field. One such avenue
for treatment improvement concerns the monitoring of mechanically ventilated patients’
respiratory effort, a challenge that has been recognized as crucial for providing optimal
respiratory support [2, 13].1 The current clinical gold standard for measuring respiratory
effort is to measure esophageal pressure using an esophageal catheter, which is invasive and
requires a skilled operator [18, 23]. Esophageal electromyographic (EMG) measurements
represent an alternative measure of respiratory effort, which, however, also requires the
invasive placement of an esophageal catheter [35, 36]. More recently, surface EMG
measurements—using electrodes placed on the skin surface above various respiratory
muscles—have emerged as an alternative, entirely noninvasive measurement modality [1,
22]. Surface EMG measurements are traditionally heavily used in the prosthetics research
field [10, 20]—and indeed, assisted mechanical ventilation can be understood as providing
a “respiratory prosthesis” [12]. However, respiratory surface EMG measurements suffer
from a comparatively low signal–to–noise ratio due to disturbances such as crosstalk from
adjacent muscles, including the heart, rendering sophisticated signal processing algorithms
indispensable for obtaining high-fidelity signals. The recording environment in an intensive
care unit is also generally challenging, and unlike in traditional prosthetics, no voluntary
calibration maneuvers can be performed by patients. Moreover, an intrinsic limitation of
EMG measurements is that they can only provide a relative measure of respiratory effort
since the ratio of the electrical field strength and the force generated by a muscle depend on
a multitude of patient-specific (and usually unmeasurable) factors. This is, thus, the core
theme of this thesis: to use advanced mathematical and statistical methods for modeling
electromyography and respiration, and to develop inference algorithms with the ultimate
aim of reliable respiratory monitoring using respiratory surface EMG measurements. Along
the path, contributions to many different disciplines are made, including the mathematical
modeling of electromyography and muscle physiology, blind source separation for
respiratory surface EMG measurements, the removal of cardiac artifacts from
single-channel respiratory EMG measurements, statistical inference under concept drift,
covariate shift, and model mismatch, and, finally, the entirely noninvasive identification of
a patient’s respiratory effort using surface EMGmeasurements.

1.1 Key contributions and outline of this thesis

To set the stage for the following chapters and introduce the reader to key concepts that
may be unfamiliar, chapters 2 and 3 provide background knowledge on statistical inference,
respiratory and muscular physiology, mechanical ventilation, and electromyography.

1While COVID-19 is not a topic of this thesis, it shall be mentioned briefly that the importance of monitoring
the respiratory drive of patients with COVID-19 has been emphasized in the emerging literature [4, 9, 11].

Mechanical
Ventilation

Respiratory
Effort

Surface EMG

Mathematical
and Statistical
Methods
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Chapter 1 Introduction

As the first major contribution of this thesis, chapter 4 introduces a comprehensive,
mathematical model of surface electromyography, muscular force generation, and motor unit
pool organization. This simulation model is then used (in the same chapter) to evaluate a
novel algorithm for blind source separation of respiratory surface EMG measurements,
which may be used to separate the activities of multiple respiratory muscles from mixture
signals, suppress undesired muscle crosstalk, or remove cardiac artifacts.
In the following chapter 5, the related problem of removing cardiac artifacts from

single-channel respiratory surface EMG measurements is considered. The key
contributions of this chapter are twofold. Firstly, a novel, partially model-based, and
partially nonparametric algorithm (termed probabilistic adaptive template subtraction,
PATS) for cardiac artifact removal is proposed. Secondly, a comprehensive evaluation
framework for the performance quantification of algorithms proposed for this problem is
developed. The framework includes an evaluation in both real measurement signals
obtained from a study of healthy subjects and in synthetic signals. Four different
performance measures are considered, providing a comprehensive picture of algorithm
performance, and ten algorithms are compared, four of which are variants of the newly
proposed PATS algorithm. Based on this performance evaluation, the newly proposed
algorithm appears to currently be the most accurate available option for recovering the raw
EMG signal free of cardiac contamination.
Chapter 6 may appear like an outlier in the context of this thesis, as it treats an abstract

statistical inference problem without any apparent connection to respiration or
electromyography. However, the methods developed in this chapter will be employed in the
following chapter 7 for estimating respiratory effort based on surface EMG measurements.
The statistical problem is this: how can one perform regression in the face of concept drift
(i.e., the system under consideration is time-varying), covariate shift (i.e., the distribution of
the available training data differs from the target data distribution), and model mismatch
(i.e., the “true” model is not in the selected model class)? This problem has received
surprisingly little consideration in the literature. In this chapter, a fully model-based
method for performing regression under these three constraints is developed. Novel,
weighted formulations of the standard Kalman filter and smoother are derived, combined
with an importance weighting procedure, and augmented with an importance-weighted
hyperparameter estimation procedure based on prediction error minimization. Numerical
examples show the validity of the proposed framework for performing time-varying
regression under covariate shift and model mismatch.
The following chapter 7 then utilizes the developed statistical framework for estimating

the pressure 𝑃mus generated by the respiratory muscles of a patient under mechanical
ventilation. To this end, a model-based sensor fusion method is developed that exploits
pneumatic measurements and multiple channels of respiratory surface EMG
measurements. All available measurements are combined using models of respiratory
mechanics, electromechanical coupling, and the dynamic time course of 𝑃mus. It is the first
method of this kind described in the literature. The proposed method is evaluated using
twelve recordings from nine intensive care patients. The results are very promising and
warrant further investigation.
The contributions described in this thesis have been the subject of three peer-reviewed

journal publications [26, 32, 33], two peer-reviewed conference publications [25, 27], and
three peer-reviewed conference abstracts [29–31] first-authored by the author. In addition,

A Model of
Surface Electro-
myography
Blind Source
Separation
Cardiac
Artifacts

Concept Drift

Covariate Shift

Model
Mismatch

Importance
Weighting

Estimating the
Pressure 𝑃mus
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publications [17, 19] and six peer-reviewed conference publications [3, 14–16, 24, 28] on
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Chapter 2

Preliminaries A:
Statistical inference

. . .the result was a proof that, if degrees of plausibility
are represented by real numbers, then there is a
uniquely determined set of quantitative rules for
conducting inference. [. . .] As a result, the imaginary
distinction between ‘probability theory’ and ‘statistical
inference’ disappears [. . .] so it could be used for
general problems of scientific inference, almost all of
which arise out of incomplete information rather than
‘randomness’.

(E. T. Jaynes, Probability theory: the logic of science)

For better or worse, real inference will remain a highly
complicated, poorly understood phenomenon.

(E. E. Leamer, Specification searches:
ad hoc inference with nonexperimental data)
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2.1 Elements of statistical inference

The reader may be surprised by the breadth and depth of the following summary of
probability theory and statistical inference, given that this is, after all, a thesis in the

field of biomedical engineering, and not in the field of statistics. This depth is prompted by
the biomedical engineering problem to be solved. The core scientific questions that arise in
the applications briefly described in chapter 1 are these:

• How can different processes be separated from one another when only their
superposition is measured?

• How can robust parameter inference be performed in the face of model errors, outliers,
and measurement noise?

• How do empirical data distributions influence statistical inference, and how can this
information be exploited to achieve more accurate inference?

These are, of course, questions at the heart of the field of statistical inference. To
appropriately justify the approach chosen in this thesis, it is, therefore, necessary to set the
stage by introducing key concepts and paradigms (section 2.1), as well as a few well-known
algorithms for statistical inference in both static (section 2.2) and dynamic systems
(sections 2.3 and 2.4).

2.1 Elements of statistical inference

This section introduces some of the core elements of statistical inference theory. These
include random variables and probability distributions (section 2.1.1), different paradigms
and objective functions for performing statistical inference (section 2.1.2), and some
properties of the resulting estimators (section 2.1.3). The genesis of statistical models and
the distinction between a process of interest and statistical noise is discussed (section 2.1.4).
Finally, brief introductions to regression under model misspecification (section 2.1.5) and
covariate shift (section 2.1.6) are provided.

2.1.1 Random variables and probability distributions

A random variable is a quantity whose value is influenced by chance. In many instances, this
is a simplifying modeling assumption: while the value of said quantity might be perfectly
predictable given a sufficiently complex model of reality and full knowledge of the state of all
relevant physical quantities, this is often not practically feasible. In this sense, randomness
is often a modeling assumption that compensates for insufficient knowledge [16].
Formally, a multivariate, real-valued, continuous random variable 𝒳 can be defined as a

measurable function 𝒳 ∶ Ω→ ℝ𝑛
that maps from a set of possible outcomes Ω to ℝ𝑛. Furthermore defining a probability
measure or probability distribution 𝑃 ∶ ℱ → [0, 1]

Random
Variable

Probability
Measure
Probability
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Chapter 2 Preliminaries A: Statistical inference

on the 𝜎−algebraℱ onΩ, such that 𝑃 is countably additive and 𝑃(Ω) = 1, we can then define
the probability of 𝒳 taking values in a Lebesgue-measurable set 𝐴 ∈ ℬ as

Pr[𝒳 ∈ 𝐴] = ∫𝒳−1(𝐴) d𝑃,
where ℬ is the Borel 𝜎-algebra on ℝ𝑛. A probability density function (PDF) then is any
measurable function 𝑝 with the property that

∫𝒳−1(𝐴) d𝑃 = ∫𝐴 𝑝 d𝜇 ∀ 𝐴 ∈ ℬ,
where 𝜇 is the Lebesgue measure in 𝑛 dimensions.1 If 𝐴 is not only Lebesgue-measurable
but also Jordan-measurable, and 𝑝 is Riemann-integrable on 𝐴, then the Lebesgue integral
in section 2.1.1 coincides with the Riemann integral [19] and we obtain the formulation

Pr[𝒳 ∈ 𝐴] = ∫𝐴 𝑝(𝑥) d𝑥,
which is usually given in engineering textbooks [55]. Throughout this thesis, the notation𝒳 ∼ 𝑃
means that the random variable𝒳 has the probability distribution 𝑃 with probability density
function 𝑝(𝑥).
Random variables and probability distributions are often characterized by their statistical

moments. The 𝐿-th order moment of a random variable 𝒳 is given by𝑀𝐿 = E[𝒳𝐿],
and its 𝐿-th order central moment by𝑀𝑐𝐿 = E[(𝒳 − E[𝒳])𝐿].
Here, E[⋅] denotes the expectation operator defined by the Lebesgue integral

E[𝒳] = ∫Ω𝒳(𝜔) d𝑃(𝜔)
which, under the regularity assumptions stated above, is equivalent to the Riemann integral

E[𝒳] = ∫ℝ𝑛 𝑥 𝑝(𝑥) d𝑥.
When it is not clear from the context, we will sometimes write, e.g.,

EQ[𝒳] = ∫ℝ𝑛 𝑥 𝑞(𝑥) d𝑥
1Equivalently, the probability density function can also be defined as a Radon-Nikodym derivative with respect
to the Lebesgue measure 𝜇.
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2.1 Elements of statistical inference

to clarify that the expectation is taken with respect to the probability distribution 𝑄. The
first-order moment (𝐿 = 1) is called the expected value of the random variable, and the
second-order central moment is called its variance.
In most practical scenarios, the true probability distribution 𝑃 is unknown and one only

has access to a set of realizations𝑥𝑘 = 𝒳(𝜔𝑘), 𝜔𝑘 ∈ Ω, 𝑘 = 1,… , 𝑁𝑆
drawn from this distribution. In this case, a natural definition of the empirical measure is

𝑃𝑁𝑆 (𝐴) = 1𝑁𝑆 𝑁𝑆∑
𝑘=1 𝛿𝑥𝑘 (𝐴),

where 𝛿𝑥𝑘 denotes theDiracmeasure centered on realization 𝑥𝑘. Equivalently, the probability
density function of the empirical measure is given by

𝑝𝑁𝑆 (𝑥) = 1𝑁𝑆 𝑁𝑆∑
𝑘=1 𝛿𝑥𝑘 (𝑥).

By the Glivenko-Cantelli theorem, 𝑃𝑁𝑆 converges uniformly to the correct underlying
distribution 𝑃 almost surely [10]. Moreover, by the strong law of large numbers, the
expectation of the empirical distribution

EPNS [𝒳] = ∫ℝ𝑛 𝑥 𝑝𝑁𝑆 (𝑥) d𝑥 = 1𝑁𝑆 𝑁𝑆∑
𝑘=1𝑥𝑘

converges almost surely to the expected value EP[𝒳] of the true distribution as𝑁𝑆 →∞ [10].
The quantity EPNS [𝒳] is often called the sample mean. Note that the sample mean is itself a
random variable since it is influenced by the random sampling of the realizations 𝑥𝑘 of 𝒳.

2.1.2 Paradigms for statistical inference
Over the last century, many different theoretical frameworks for formulating statistical
inference problems have been proposed. As this thesis is ripe with references to many of
these different inference paradigms, they deserve a proper introduction, which will be the
subject of this section. Particular emphasis is placed on illuminating the relationships and
partial equivalences between the different paradigms.
To set the stage for statistical inference, throughout this thesis we assume that the

observations 𝑦 are drawn from a true probability distribution, i.e.,𝑦 ∼ 𝑝(𝑦) = 𝑝(𝑦 ∣ 𝑥),
where 𝑝(𝑦 ∣ 𝑥) specifies the relationship between the covariates and the target variable, and
the covariates 𝑥 are assumed to be fixed, i.e., not randomly distributed. Moreover, we often
assume a probabilistic regression model to be given, which is nothing else but a a
parameterized family of probability density functions 𝑞(𝑦 ∣ 𝑋, 𝜃). If there is a parameter
vector 𝜃∗ for which 𝑝(𝑦 ∣ 𝑥) ≡ 𝑞(𝑦 ∣ 𝑋, 𝜃∗) ∀ 𝑦, 𝑥
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Chapter 2 Preliminaries A: Statistical inference

the regression model is said to be correctly specified. Otherwise,model mismatch is present,2
meaning that the model does not described reality correctly. We will return to this issue in
detail in section 2.1.5.
Arguably, themost “natural” paradigm for statistical inference ismaximum likelihood (ML)

estimation, which aims to find the parameters �̂�ML that maximize the likelihood of observing
the data as they were observed. The ML solution to the parameter inference problem is then
given by �̂�ML = argmax𝜃 𝑞(𝑦 ∣ 𝑋, 𝜃). (2.1)

If individual samples 𝑦𝑘 are assumed to be statistically independent, then we have
𝑞(𝑦 ∣ 𝑋, 𝜃) = 𝑁𝑆∏

𝑘=1 𝑞𝑘(𝑦𝑘 ∣ 𝑥𝑘, 𝜃), (2.2)

where 𝑝𝑑𝑓[𝑞𝑘]𝑦𝑘𝑥𝑘, 𝜃 denotes the likelihood (under the assumed model with parameters 𝜃)
of observing 𝑦𝑘 given that 𝑥𝑘 was observed. By further noting that�̂�ML = argmax𝜃 𝑞(𝑦 ∣ 𝑋, 𝜃) = argmax𝜃 log 𝑞(𝑦 ∣ 𝑋, 𝜃),
we obtain the well-known formulation

�̂�ML = argmax𝜃 log
𝑁𝑆∏
𝑘=1 𝑞𝑘(𝑦𝑘 ∣ 𝑥𝑘, 𝜃) = argmax𝜃

𝑁𝑆∑
𝑘=1 log 𝑞𝑘(𝑦𝑘 ∣ 𝑥𝑘, 𝜃)= argmin𝜃 − 𝑁𝑆∑

𝑘=1 log 𝑞𝑘(𝑦𝑘 ∣ 𝑥𝑘, 𝜃) (2.3)

in terms of the sum of the log-likelihood of individual samples.
A very close relative of ML estimation ismaximum a posteriori (MAP) estimation. Here,

the idea is to find the set of parameters �̂�MAP which maximizes the posterior
probability 𝑝(𝜃 ∣ 𝑦, 𝑥), in other words, the most likely parameter vector. Using Bayes’ rule
and (for the last step) assuming statistical independence between individual samples, one
obtains �̂�MAP = argmax𝜃 𝑝(𝜃 ∣ 𝑦, 𝑋) = argmax𝜃 𝑝(𝑦 ∣ 𝑋, 𝜃)𝑝(𝜃)𝑝(𝑦 ∣ 𝑋)= argmax𝜃 𝑞(𝑦 ∣ 𝑋, 𝜃)𝑝(𝜃) = argmax𝜃 log 𝑞(𝑦 ∣ 𝑋, 𝜃)𝑝(𝜃)

= argmax𝜃 log𝑝(𝜃) + 𝑁𝑆∑
𝑘=1 log 𝑞𝑘(𝑦𝑘 ∣ 𝑥𝑘, 𝜃), (2.4)

which is identical to the ML estimate, except for the regularizing term log𝑝(𝜃), which
represents the impact of prior knowledge about the likelihood of different parameter
vectors on the resulting parameter estimate. If a uniform distribution is assumed for the
prior 𝑝(𝜃), the MAP solution coincides with the ML solution.
2This problem has many names. Model bias,model error andmodel misspecification are a few of them.
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2.1 Elements of statistical inference

So far, we always assumed the regression model to define a family of probability density
functions. In other words, we assumed a probabilistic regression model. This is not a
necessary condition for performing statistical inference, though. Consider a parametric
class of deterministic functions 𝑓(𝜃) that simply map regressors 𝑋 to predictions 𝑓(𝑋, 𝜃), i.e.,𝑋 ↦ 𝑓(𝑋, 𝜃) ∈ ℝ𝑁𝑆 .
Then, inference can also be formulated as wanting to minimize some metric 𝓁(𝑦, 𝑓(𝑋, 𝜃)) of
the discrepancy between the observed outputs 𝑦 and the model outputs 𝑓(𝑋, 𝜃) by choosing
the model parameters 𝜃 appropriately. In the following, statistical independence between
individual samples will always be a model assumption, and we will assume the same
model 𝑓(𝜃) for all samples:𝑓(𝑋, 𝜃) = [𝑓(𝑥1, 𝜃) ⋯ 𝑓(𝑥𝑁𝑆 , 𝜃)]𝖳 .
Similarly, we will use a per-sample loss function 𝓁(𝑦𝑘, 𝑓(𝑥𝑘, 𝜃)) and assume that

𝓁(𝑦, 𝑓(𝑋, 𝜃)) = 𝑁𝑆∑
𝑘=1𝓁(𝑦𝑘, 𝑓(𝑥𝑘, 𝜃)).

Under these assumptions, the overall loss can be rewritten in terms of the empirical
expectation of the per-sample loss as

𝓁(𝑦, 𝑓(𝑋, 𝜃)) = 𝑁𝑆∑
𝑘=1𝓁(𝑦𝑘, 𝑓(𝑥𝑘, 𝜃)) = 𝑁𝑆 ⋅ EPNS [𝓁(𝑦, 𝑓(𝑥, 𝜃))],

thereby providing a statistical interpretation despite the use of a purely deterministic
regression model.
Known since the eighteenth century [21, 56], least-squares (LS) estimation is possibly the

most famous paradigm for parameter inference of all. The approach is simple: minimize the
sum—or, equivalently, the average—of the squared distance between model predictions
and observations. The least-squares loss function is given by

𝓁(𝑦, 𝑓(𝑋, 𝜃)) = ‖𝑦 − 𝑓(𝑋, 𝜃)‖22 = 𝑁𝑆∑
𝑘=1(𝑦𝑘 − 𝑓(𝑥𝑘, 𝜃))2 = 𝑁𝑆 ⋅ EPNS [(𝑦 − 𝑓(𝑥, 𝜃))2]

and the LS estimator is, therefore, given by�̂�LS = argmin𝜃 EPNS [(𝑦 − 𝑓(𝑥, 𝜃))2].
Least-squares estimation has proven a tremendously successful paradigm with vast
numbers of applications throughout science and engineering [56]. It is identical to ML
estimation under the assumption of a deterministic regression function and a Gaussian
error distribution, i.e., 𝑞𝑘(𝑦𝑘 ∣ 𝑥𝑘, 𝜃, 𝜎2𝜀 ) =𝒩(𝑓(𝑥𝑘, 𝜃), 𝜎2𝜀 ).

Least-Squares
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Chapter 2 Preliminaries A: Statistical inference

In that case,

�̂�ML, �̂�𝜀 = argmin𝜃,𝜎𝜀 − 𝑁𝑆∑
𝑘=1 log 𝑞𝑘(𝑦𝑘 ∣ 𝑥𝑘, 𝜃, 𝜎2𝜀 )= argmin𝜃,𝜎𝜀 − 𝑁𝑆∑
𝑘=1 log 1√2𝜋𝜎2𝜀 𝑒−

12𝜎2𝜀 (𝑦𝑘−𝑓(𝑥𝑘 ,𝜃))2

= argmin𝜃,𝜎𝜀
𝑁𝑆∑
𝑘=1 12𝜎2𝜀 (𝑦𝑘 − 𝑓(𝑥𝑘, 𝜃))2 + 𝑁𝑆2 log 2𝜋𝜎2𝜀 ,

and since the optimization with respect to the regression parameters 𝜃 can be carried out
independent of the value of 𝜎𝜀, it follows that3�̂�ML = �̂�LS
in this special case. Similarly, it can be demonstrated that (regularized) LS estimation
coincides with other probabilistic estimates such as MAP or Wasserstein distributionally
robust estimates [36]. These results, connecting a somewhat arbitrary optimization
approach with a probabilistic inference perspective, further legitimize the empirically
successful LS paradigm.
Squared distance minimization underlies not only least-squares estimation but also

minimum mean squared error (MMSE) estimation. The deciding difference between the
two is that in MMSE estimation, the expected value of the squared errors in the parameters
is minimized, whereas an LS estimator minimizes the expected value of the squared errors
in the predictions. We define

�̂�MMSE = argmin𝜃 E[(𝜃∗ − 𝜃)2 ∣ 𝑦, 𝑥] = argmin𝜃 ∫ (𝜃∗ − 𝜃)2 𝑝(𝜃 ∣ 𝑦, 𝑥) d𝜃,
and with a short derivation, one obtains [45]�̂�MMSE = E[𝜃 ∣ 𝑦, 𝑥].
Thus, theMMSE estimator is given by themean of the posterior parameter distribution. Note
the difference to the MAP estimator above: while the MMSE estimator is given by themean
of the posterior distribution, the MAP estimator is given by itsmode.
Empirical risk minimization (ERM), popularized by Vapnik and Chervonenkis [67], is a

particularly general statistical inference framework. The goal of ideal risk minimization is
to minimize the expected value of some per-sample loss function 𝓁(𝑦, 𝑓(𝑥, 𝜃)). This quantity
is called the risk functionalℛ(𝜃) = E[𝓁(𝑦, 𝑓(𝑥, 𝜃))] = ∫ 𝓁(𝑦, 𝑓(𝑥, 𝜃))𝑝(𝑦, 𝑥) d𝑦 d𝑥, (2.5)

3Using the estimate �̂�ML = �̂�LS for the regression parameters, the optimization with respect to the equation
error covariance can then be carried out by calculating the gradient of the resulting expression and setting
it to zero. The result is the (asymptotically unbiased) maximum-likelihood error covariance estimate �̂�2𝜀 =1𝑁𝑆 ∑𝑁𝑆𝑘=1(𝑦𝑘 − 𝑓(𝑥𝑘 , �̂�LS))2.
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2.1 Elements of statistical inference

and the associated parameter estimate is given by�̂�RM = argmin𝜃 ℛ(𝜃). (2.6)

Since the true data-generating PDF 𝑝(𝑦, 𝑥) = 𝑝(𝑦 ∣ 𝑥)𝑝(𝑥) is unknown in practice, this
minimization problem is infeasible. Therefore, one replaces the expectation with respect to
this unknown distribution by the empirical expectation taken over the available data samples.
We thus define the empirical risk functional

ℛemp(𝜃) = EPNS [𝓁(𝑦, 𝑓(𝑥, 𝜃))] = 1𝑁𝑆 𝑁𝑆∑
𝑘=1𝓁(𝑦𝑘, 𝑓(𝑥𝑘, 𝜃)).

Statistical inference is then performed by solving the optimization problem�̂�ERM = argmin𝜃 ℛemp(𝜃),
possibly subject to additional constraints on the parameters. Many classical estimation
paradigms can be formulated within the ERM framework, including (very obviously)
least-squares estimation and maximum likelihood estimation [66, 68]. There is, of course,
also a regularized version of ERM, which is called structural risk minimization (SRM) [23,
66, 67]. The SRM inference problem is stated as�̂�SRM = argmin𝜃 ℛemp(𝜃) + 𝜆 𝓁reg(𝜃)

= argmin𝜃 1𝑁𝑆 𝑁𝑆∑
𝑘=1𝓁(𝑦𝑘, 𝑓(𝑥𝑘, 𝜃)) + 𝜆 𝓁reg(𝜃),

where 𝓁reg(𝜃) is a regularization term that penalizes overly complex models, and 𝜆 is a
constant that controls the balance between minizing the expected empirical risk and
minimizing the complexity of the selected model (more on that in the following section).
Many of the discussed paradigms coincide under specific assumptions on the involved

distributions or the regression model. One particularly prominent example of this is the
ordinary least squares (OLS) setting, which will be discussed in detail in section 2.2.1, and
in which the ML, MMSE, and LS estimates all coincide. Among many others, Luxburg
and Schölkopf [39] provide a comprehensive overview of many of the estimation schemes
discussed above, taking a statistical learning theory perspective.
As another remark, all of the above estimates are point estimates which solve an

optimization problem to obtain an in some sense ideal parameter estimate. By contrast, in
fully Bayesian inference the full posterior distribution 𝑝(𝜃 ∣ 𝑦, 𝑋) is the target of the
inference procedure. Fully Bayesian inference provides a much more complete picture of
the validity of the resulting estimates, at the cost of increased computational and
algorithmic complexity. Markov chain Monte Carlo (MCMC) methods are the classical tool
for performing exact fully Bayesian inference [3]; popular approximative algorithms include
variational inference [72] and expectation propagation [41]. Of course, if one takes the
mode of a posterior distribution resulting from a fully Bayesian inference algorithm, this
should be—depending on the accuracy of the employed inference algorithm—again
equivalent to the MAP estimator.
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Chapter 2 Preliminaries A: Statistical inference

Finally, at peril of stating the obvious, observe that all of the inference paradigms
introduced above formulate statistical inference as an optimization problem. Every
inference algorithm based on these paradigms is, at its heart, an optimization algorithm,
whence there is an intimate link between statistical inference and optimization theory.

2.1.3 Properties of statistical estimators and the bias-variance trade-off
Statistical estimators (such as the ones introduced in the previous section) are often discussed
and compared in terms of various properties; two of thosewill be relevant in the context of this
thesis: consistency and unbiasedness. An estimator �̂� of a quantity 𝜃∗ is said to be consistent if
it converges in probability to the true parameter vector as the number𝑁𝑆 of available samples
increases indefinitely, i.e.,𝑝(|�̂�𝑁𝑆 − 𝜃∗| > 𝛿)→ 0 as 𝑁𝑆 → 0 ∀ 𝛿 > 0
or

plim(�̂�𝑁𝑆 ) = 𝜃∗.
As opposed to this asymptotic property, unbiasedness is a finite-sample property: An
estimator is unbiased if

E[�̂� − 𝜃∗] = 0,
regardless of the number of available samples. Note that neither of the two properties implies
the other in the absence of further assumptions.
At first glance, one might believe unbiased estimators to be uniformly superior to biased

estimators, but this is not the case. To understand this, it is helpful to consider the well-
known bias-variance decomposition of the mean squared parameter estimation error. In
the following, all expectations and the variance are taken over the true, data-generating
distribution 𝑝(𝑦, 𝑋), and 𝜇�̂� ∶= E[�̂�]. We have [42]
E[(�̂� − 𝜃∗)𝖳(�̂� − 𝜃∗)] = E[((�̂� − 𝜇�̂�) − (𝜃∗ − 𝜇�̂�))𝖳((�̂� − 𝜇�̂�) − (𝜃∗ − 𝜇�̂�))]= E[(�̂� − 𝜇�̂�)𝖳(�̂� − 𝜇�̂�)] − 2E[�̂� − 𝜇�̂�]𝖳(𝜃∗ − 𝜇�̂�) + E[(𝜃∗ − 𝜇�̂�)𝖳(𝜃∗ − 𝜇�̂�)]= E[(�̂� − 𝜇�̂�)𝖳(�̂� − 𝜇�̂�)] + E[(𝜃∗ − 𝜇�̂�)𝖳(𝜃∗ − 𝜇�̂�)]= Var[�̂�] + Bias2[�̂�]. (2.7)

Thus, it becomes apparent that a given estimator’s mean squared parameter estimation error
can always be decomposed into a variance-related term anda bias-related term. As a corollary,
a low-variance but biased estimatormay, in principle, attain a lowermean squared error than
an unbiased but high-variance estimator. The problem of finding a model that strikes the
right balance between bias and variance to yield optimal average performance is known
as the bias-variance trade-off. Two essential means for attaining this optimal balance are
the inclusion of prior information and regularization, both of which are discussed in the
following section. Both introduce a bias into the estimation procedure while simultaneously
reducing the variance of the estimator. (A classic example of a biased estimator that achieves
uniformly better performance in terms of the mean squared error than the ML estimator
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2.1 Elements of statistical inference

in the same setting (without the use of prior knowledge) is the James-Stein estimator [32].)
Finally, without going into much detail, notice that the bias-variance decomposition (2.7)
does not imply the existence of a bias-variance trade-off : the decomposition holds for a
given estimator, but it does not imply that, e.g., modifying that estimator to reduce the bias-
related error (say, by increasing the model order) necessarily comes at the cost of increased
variance-related error. While bias-variance trade-offs have been demonstrated under specific
circumstances, they are no universal property of statistical estimators, and settings have
been observed (most notably: deep neural networks) in which both bias and variance can be
decreased at the same time by increasing model order [43].

2.1.4 Model genesis: process and noise, priors and regularization

Until this point, we always assumed that one of the protagonists of statistical inference was
simply given to us: the model. Given a parametric model, our only task was to estimate
parameter values that are— in some sense—optimal. But where does the model come
from?
Ideally, a model should represent the synthesis of everything we know about the process

under observation without taking the observations into account that will be used to identify the
model’s parameters. This prior knowledge comes in two flavors:

1. structural knowledge about the number and kind of different quantities that capture
the behavior of the process (internal state variables and observations), and about the
ways in which these quantities can and cannot interact, and

2. knowledge about the likely values of the model parameters.

Both types of prior knowledgemay be deterministic or probabilistic in nature. As an example,
we may know for a fact that two quantities A and B do not interact with each other, therefore
incorporating this fact into our model, or we may believe that they do not interact with 95%
certainty, yet still be open to the 5% chance that they, in fact, do interact. In the latter case,
we might use a Bayesian model averaging technique [15, 29].4 In the case of parameter
knowledge, we might know that a parameter definitely cannot be negative or that it must
be between 0 and 1. Alternatively, we might only have a rough idea that it lies somewhere
around 35, but could also be significantly smaller or larger. Both kinds of beliefs can be
encoded by a prior probability distribution in a Bayesian model, corresponding to the prior𝑝(𝜃) in the MAP estimator

�̂�MAP = argmax𝜃 log𝑝(𝜃) + 𝑁𝑆∑
𝑘=1 log 𝑞𝑘(𝑦𝑘 ∣ 𝑥𝑘, 𝜃),

reproduced from eq. (2.4) above.

4Bayesian model averaging should also be employed in the common case in which there is no a priori
knowledge about the class of models that might describe the observed data best. The commonly
used method—evaluate model performance empirically, and perform statistical inference with the best-
performing model family— incorrectly discards uncertainty about the correct model family.
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Chapter 2 Preliminaries A: Statistical inference

In section 2.1.2, we already pointed out that the MAP optimization problem is identical to
the ML optimization from eq. (2.3),

�̂�ML = argmin𝜃 − 𝑁𝑆∑
𝑘=1 log 𝑞𝑘(𝑦𝑘 ∣ 𝑥𝑘, 𝜃),

except for the additional, regularizing term log𝑝(𝜃) in the cost. (By regularization, one
usually means adding an extra term 𝓁reg(𝜃) to the cost function, which depends on themodel
parameters 𝜃 but not on the data.) Adding such a term biases the estimation procedure
in some direction that is considered plausible by the modeler and may yield a better bias-
variance trade-off (see the previous section). Many different regularization schemes have
been proposed in the literature for varying reasons, and—as with inference paradigms— it
turns out that many of them coincide under specific assumptions. Returning to the MAP
regularization term log𝑝(𝜃) and assuming, for the sake of example, a multivariate Gaussian
prior5 𝑝(𝜃) ∼𝒩(𝜇𝜃,Σ𝜃)
with mean 𝜇𝜃 = 0 and covariance matrix Σ𝜃, we obtain

log𝑝(𝜃) = log 1(2𝜋)𝑚∕2|Σ𝜃|𝑒− 12𝜃𝖳Σ−1𝜃 𝜃
= −12𝜃𝖳Σ−1𝜃 𝜃 + log 1√(2𝜋)𝑚|Σ𝜃|= −12‖𝜃‖2Σ−1𝜃 + const, (2.8)

where the constant does not depend on the model parameters 𝜃 and is, therefore, irrelevant
for the optimization. Equation (2.8) is known as a Tikhonov regularization term, whence we
have demonstrated the equivalence of a zero-mean Gaussian prior with covariancematrix Σ𝜃
on the parameters and Thikonov regularization with kernel matrix Σ−1𝜃 . If we assume a
homoscedastic covariance matrix Σ𝜃 = 1𝜆 𝐼 (𝐼 being the identity matrix), we obtain

log𝑝(𝜃) = −𝜆2‖𝜃‖22 + const,
a special case which is known as ridge regularization. If one uses an empirical Bayes
method for estimating the regularization constant 𝜆, the resulting estimate is equivalent to
the classical James-Stein estimator [9, 32]. An analogous derivation demonstrates thatℒ1-norm regularization, often called LASSO regularization (least absolute shrinkage and
selection operator) and widely used for its sparsity-inducing properties, is equivalent to
assuming a zero-mean Laplacian prior [42]. To summarize, the choice of a regularization
scheme, although sometimes an afterthought to model selection, is an integral part of the
choice of a model family.
Once again returning to eq. (2.4),

�̂�MAP = argmax𝜃 log𝑝(𝜃) + 𝑁𝑆∑
𝑘=1 log 𝑞𝑘(𝑦𝑘 ∣ 𝑥𝑘, 𝜃),

5Refer to appendix 2 for some details on the multivariate Gaussian distribution.
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Figure 2.1 – Example illustrating the difference between MAP and ML estimates. The
estimation task is to identify 𝜃1 and 𝜃2 in 𝑦 = 𝜃1𝑥 + 𝜃2, given measurements disturbed
by Gaussian noise 𝜀 ∼ 𝒩(0,Σ𝜀). The MAP estimator uses a reasonably accurate guess
of the true linear relation. In panel A, just three samples are used, and the MAP
estimator is significantly closer to the true parameter values than the ML estimator. In
panel B, 25 samples are used, and the two estimates are already almost indistinguishable.
Panel C shows the average of the maximum relative parameter estimation error for the two
estimators as a function of the sample size 𝑁𝑆 , calculated over 𝑁𝑟 = 1000 realizations.

it is evident that both the prior 𝑝(𝜃) and the data (𝑥𝑘, 𝑦𝑘) influence the final parameter
estimate �̂�MAP. If we assume that the collected data are informative in the sense that they
provide some minimal amount of information about the parameter values of interest, it
follows that as the amount of collected data increases, i.e., as 𝑁𝑆 grows, the influence of the
prior diminishes. This phenomenon is illustrated in fig. 2.1, in whichMAP andML estimates
in a simple linear regression problem are compared. It can be observed that the inclusion
of (reasonably correct) prior knowledge about the parameters in the MAP estimator leads
to better performance in the small sample size regime, whereas for large sample sizes, the
MAP and ML estimates converge. This behavior is an instance of a general principle: It has
been shown that in many settings, the influence of the prior diminishes as more data become
available, and the MAP estimate converges towards the ML estimate [14, 42, 64].6
A crucial distinction to be made when constructing a model is between the process of

interest and “the rest”. Which information contained in the data is considered a reflection
of the process of interest, and which information is considered “noise”? Notice that nothing
differentiates “noise” from “the process” at the physical level: both are consequences of
fundamental physical processes. Yet, for some non-physical reason, one is interested in
separating one from the other to obtain a truthful representation of some abstract, high-level
“process” one is interested in. A practical definition of “noise” then is this: any deviation from
the assumed (deterministic) process model is considered noise.7 In mathematical terms, we

6This is a consequence of the Bernstein–von Mises–theorem [64, chapter 10]. Unfortunately, there are counter-
examples in which the assumptions of the theorem do not hold—see, e.g., Diaconis and Freedman [14].

7This formulation can, of course, be extended to include probabilistic process models as well. For reasons of
simplicity, the discussion is limited to deterministic models here, where the complete model only becomes
probabilistic by including a probabilistic noise model.
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have 𝑦𝑘 = 𝑓(𝑥𝑘, 𝜃) + 𝜀𝑘, (2.9)

where 𝜀 ∼ 𝑝(𝜀 ∣ 𝜃) denotes the (probabilistic) noise component, which may or may not
depend on the model parameters 𝜃. To achieve good separation between process and noise
based on the available measurements (𝑦𝑘, 𝑥𝑘)— the core challenge of statistical
inference— it is therefore not sufficient to create an adequate model 𝑓(𝑋, 𝜃) of the process:
an adequate model of the noise distribution 𝑝(𝜀 ∣ 𝜃) is equally essential, and often just as
hard or even harder to find.
The ubiquitous noise model in practice is, of course, the normality assumption𝜀𝑘 ∼𝒩(0, 𝜎2𝜀 ).

The reasons are twofold. Firstly, the central limit theorem famously states that a sum of
many i.i.d. random variables asymptotically follows a normal distribution, regardless of the
distribution of the individual RVs.8 Accordingly, measurement noise, which is the result
of a large number of individual physical processes, is often assumed and experimentally
observed to follow a normal distribution. Secondly, and just as importantly, the normality
assumption has proved to facilitate the derivation of very efficient inference algorithms,many
of which break down once a different distribution is assumed for the noise [56]. Nevertheless,
other noise distributions can and are, of course, being assumed by statisticians, informed by
domain knowledge about the characteristics of the disturbance.
One particular and often–neglected component of the noise signal is themodel error. If,

as defined by eq. (2.9), every deviation from the assumed process model is considered noise,
then this must necessarily also include errors resulting from a discrepancy between the
process model and reality. Since this particular source of disturbance plays a vital role in this
thesis, the following section is devoted to this challenge exclusively.

2.1.5 Model misspecification
A regression model, which as described in the previous section may be composed of a
deterministic process model 𝑓(𝑥, 𝜃) and a probabilistic noise model 𝑞(𝜀𝑘 ∣ 𝜃), is nothing else
but a parameterized family of probability distributions 𝑞(𝑦 ∣ 𝑋, 𝜃). Reiterating what was
briefly mentioned in section 2.1.2, a regression model is said to be correctly specified if there
is a parameter vector 𝜃∗ such that𝑞(𝑦 ∣ 𝑋, 𝜃∗) ≡ 𝑝(𝑦 ∣ 𝑋) ∀ 𝑋,
where one assumes that the observations 𝑦 are drawn from a true probability distribution 𝑃,
i.e., 𝑦 ∼ 𝑝(𝑦) = 𝑝(𝑦 ∣ 𝑋). (2.10)

Note that, as discussed in the previous section, both the process model 𝑓(𝑥, 𝜃) and the noise
model 𝑞(𝜀𝑘 ∣ 𝜃) need to be correct in order for the combined model to be correctly specified.
Given the obvious violation of the assumption of correct model specification in almost any
practical application, what can one say about the properties of the usual estimators in the
face of model misspecification? Can any performance bounds or guarantees still be retained?
8The central limit theorem is another consequence of the strong law of large numbers [10].
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2.1 Elements of statistical inference

The answer is, fortunately, yes. It can be shown [2, 76] that under mild regularity
conditions on the involved distributions, a maximum likelihood estimator (MLE)—such as
OLS—converges almost surely to the parameter vector�̂�KL = argmin𝜃 DKL(𝑃 ‖ 𝑄(𝜃))
minimizing the Kullback-Leibler (KL) divergence

DKL(𝑃 ‖ 𝑄(𝜃)) = ∫ log( d𝑃d𝑄) d𝑃 (2.11)

= ∫ 𝑝(𝑦 ∣ 𝑋) log( 𝑝(𝑦 ∣ 𝑋)𝑞(𝑦 ∣ 𝑋; 𝜃)) d𝑦
between the true distribution 𝑃 and the identified model 𝑄. So, while the true distribution
may not be achieved, an ML estimator does minimize the discrepancy between reality and
model assumption.9 Nevertheless, model misspecification represents a significant challenge
in many application scenarios. Depending on the (assumed) source of the model mismatch,
various strategies have been put forth for solving the challenge.
Outliers are, by definition, samples that significantly deviate from the assumed model of

reality. Given a probabilistic model, these samples are extremely unlikely to occur, yet for
some reason, they are observed more frequently than would be expected. They are, thus, a
classic example of model misspecification. One way of handling outliers is to adjust the
noise model to encompass the outliers’ occurrence. The use of a Laplace distribution
assumption for the noise model is a common choice that is equivalent to minimizing the
mean absolute deviation from the deterministic process model (instead of the mean squared
deviation in the case of the normality assumption). Another option specifically tailored to
the modeling of outliers is the normal with unknown variance (NUV) noise model [38, 71],
in which the noise signal is described as a normally distributed signal, the variance of
which is occasionally (namely, when an outlier occurs) significantly increased. The
occurrence of outliers is determined by means of an expectation maximization (EM)
algorithm. Both of these options aim at reducing the amount of model misspecification by
including outliers in the model itself. An alternative (and closely related) approach is to
limit the influence of outliers on the resulting estimates by modifying the cost function.
This is the approach taken by classical robust estimators, such as M-estimators [30], which
abandon the squared cost function in favor of cost functions less sensitive to extreme values
of the residuals 𝜀𝑘. For some of these more outlier-robust cost functions, there is a
probabilistic interpretation, e.g., as discussed above, the choice𝓁(𝑦𝑘, 𝑓(𝑥𝑘, 𝜃)) = |𝑦𝑘 − 𝑓(𝑥𝑘, 𝜃)| = |𝜀𝑘|
is equivalent to assuming a Laplacian model for the noise distribution 𝑝(𝜀𝑘).
Another frequent source of model misspecification is the fact that in the usual statistical

models, the covariates 𝑋 are assumed to be known exactly. Since these are often the results
9Unfortunately, all the usual tests for statistical power and significance, as well as uncertainty measures such
as the parameter standard deviation, break down once the model is misspecified. See, e.g., Berk et al. [8] and
Freedman [18] for a detailed discussion of this topic and alternative procedures for obtaining valid uncertainty
estimates. Here, we will ignore this issue and concern ourselves exclusively with the validity of the point
estimate itself.
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Chapter 2 Preliminaries A: Statistical inference

of empirical measurements, this assumption is frequently violated. As a remedy,
errors-in-variables (EIV) versions of many of the classical models have been proposed in the
literature [22, 57, 65]. These models assume that𝑥𝑘 = 𝑥∗𝑘 + 𝜉𝑘 (2.12)

where 𝑥∗𝑘 is the latent (true) value of the covariates for sample 𝑘 and 𝜉𝑘 is the measurement
error in these signals. Errors in the covariates can lead to significantly biased estimates if
they are not considered in the estimation procedure; see, e.g., Wansbeek and Meijer [75]
for a derivation of the exact bias when neglecting covariate errors in multivariate linear
regression. Correcting this bias is not trivial since the (relative) variances of themeasurement
and equation errors are often unknown and need to be estimated from the data. For this
reason, assuming an EIV model usually renders the inference procedure significantly more
complex.
Overfitting is another interesting case ofmodelmismatch. At first glance, onemight believe

that using a high-dimensional—or “nonparametric”— regression model such as a deep
neural network, a Dirichlet process model, or a Gaussian process model would solve the
model mismatch problem. This is generally not the case. While the regression model itself
might be flexible enough to describe the observed process, what is almost always lacking
is an accurate representation of the noise: what are all the sources of disturbances to the
process itself and measurements thereof, and what is their relative importance? So long as
this crucial model component is not specified correctly, which is virtually never the case,
even an infinite-dimensional regression model will not allow perfect identification of the
observed process because the line between what is part of the process and what is part of
the noise will not be drawn correctly. Despite a highly flexible process model, the complete
model—process model and noise model in conjunction— is still misspecified.
The overfitting problem is, of course, well-known and routinely addressed in current

machine learning applications by means of various regularization schemes. As discussed in
the previous section, these are just another way of modifying the regression model. Finding
a combination of a high-dimensional regression model and an automatic regularization
scheme that leads to regression results that generalize well— i.e., that avoid overfitting— is
still a largely unsolved problem. For deep neural networks, in particular, recent
applications indicate remarkably good generalization capabilities, but the reason for this
unexpectedly good generalization is currently unclear [31, 80]. It has been hypothesized
that both the particular structure of these networks as well as the stochastic gradient
descent algorithm used for the parameter identification step may contribute to these
models’ good generalization capabilities [25, 44].
One situation in which model misspecification may lead to seriously impaired estimation

performance is when there is covariate shift. This situation, and a possible remedy, are the
subject of the following section.

2.1.6 Regression under covariate shift

Recall the risk minimization (RM) formulation of eq. (2.5), (2.6):�̂�RM = argmin𝜃 Eptrain[𝓁(𝑦, 𝑓(𝑥, 𝜃))]
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Figure 2.2 – An example illustrating the effect of model mismatch in combination with
an imbalanced dataset. The true relationship is given by 𝑦 = 0.1𝑥4 − 0.5𝑥 + 10, and
measurements are corrupted by Gaussian noise with constant variance. Samples 𝑥𝑘 are
drawn from a gamma distribution with shape parameter 2 and scale parameter 1, truncated
to [0, 10]. The least-squares empirical risk minimization (ERM) solution is well-adapted to
the training data distribution 𝑝train. If an estimate is desired that minimizes the expected
least-squares loss over the uniform distribution on [0, 10], then simply weighting each
sample by its importance 𝑤𝑘 = 𝑝target(𝑥)∕𝑝train(𝑥) ∝ 1∕𝑝train(𝑥) yields the IWERM
estimate, which is close to the optimal solution which is here defined as the solution that
minimizes the mean squared error over 𝑝target(𝑥). In the linear regression case, ERM is
equivalent to ordinary least squares (OLS), see section 2.2.1, and IWERM can be performed
by means of weighted least squares (WLS), see section 2.2.2. The difference to the optimal
solution is due to the finite sample number 𝑁𝑆 = 500; IWERM is a consistent estimator
but may be biased for finite sample numbers. For larger values of𝑁𝑆 , the IWERM estimate
converges to the ideal solution. Both the ERM and IWERM regression lines shown are
averaged over 𝑁𝑟 = 1000 realizations to illustrate their respective average performance.

An RM estimator minimizes the expected risk over the training dataset, i.e., the data used for
identifying the parameters. Thus, if the training dataset is dominated by samples from one
region of the data space, then the model parameters will be optimized predominantly to fit
the data in that region well—at the cost of other, less-frequently observed regions of the data
space. Figure 2.2 shows an illustration of this phenomenon for a simple linear regression
task. In this example, the best solution to the problem would, of course, be to select a more
appropriate process model 𝑓(𝑥, 𝜃). In practice, however, there may be various reasons for
using a misspecified model: such a model may be selected for being a well-known standard
model, for having computationally attractive properties, having fewer parameters and being
identifiable with little data, or, quite simply, because better models are not readily available.
The behavior illustrated in fig. 2.2 is not generally a problem—it is simply the optimal

solution to the ERM optimization problem. It is problematic, however, if model performance
on the training data distribution𝑝train(𝑦, 𝑥) = 𝑝(𝑦 ∣ 𝑥)𝑝train(𝑥)
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is not the ultimate optimality criterion, but model performance should instead be optimized
for some target distribution 𝑝target(𝑦, 𝑥) = 𝑝(𝑦 ∣ 𝑥)𝑝target(𝑥)
that differs from 𝑝train(𝑦, 𝑥). A discrepancy between 𝑝train(𝑥) and 𝑝target(𝑥) is called covariate
shift in the literature [47, 52, 59], and if it is present, the RM-optimal parameter estimate
changes to �̂�IWRM = argmin𝜃 Eptarget[𝓁(𝑦, 𝑓(𝑥, 𝜃))], (2.13)

where IWRM denotes importance-weighted risk minimization, and the choice of the term
importance-weighted will become apparent in the next paragraph. If one assumes that𝑝target(𝑥) ≡ 𝑝train(𝑥), then usual RM is recovered.
How can the optimization problem (2.13) be solved in practice? A simple approach has

been proposed by Shimodaira [52]. Assuming that supp
(𝑝target) ⊂ supp(𝑝train) and realizing

that �̂�IWRM = argmin𝜃 Eptarget[𝓁(𝑦, 𝑓(𝑥, 𝜃))]= argmin𝜃 ∬ 𝓁(𝑦, 𝑓(𝑥, 𝜃))𝑝(𝑦 ∣ 𝑥)𝑝target(𝑥) d𝑦 d𝑥
= argmin𝜃 ∫ 𝑝target(𝑥) ∫ 𝓁(𝑦, 𝑓(𝑥, 𝜃))𝑝(𝑦 ∣ 𝑥) d𝑦 d𝑥
= argmin𝜃 ∫ 𝑝target(𝑥)𝑝train(𝑥) ⋅ 𝑝train(𝑥) ∫ 𝓁(𝑦, 𝑓(𝑥, 𝜃))𝑝(𝑦 ∣ 𝑥) d𝑦 d𝑥
= argmin𝜃 Eptrain[𝑝target(𝑥)𝑝train(𝑥) ⋅ 𝓁(𝑦, 𝑓(𝑥, 𝜃))],

the problem can be reformulated as a weighted version of the classical RM problem. Again
replacing the unknown exact training distribution 𝑝train(𝑥) with the empirical distribution,
we obtain

�̂�IWERM = argmin𝜃 EPNS[𝑝target(𝑥)𝑝train(𝑥) ⋅ 𝓁(𝑦, 𝑓(𝑥, 𝜃))]
= argmin𝜃 1𝑁𝑆 𝑁𝑆∑

𝑘=1
𝑝target(𝑥𝑘)𝑝train(𝑥𝑘) ⋅ 𝓁(𝑦𝑘, 𝑓(𝑥𝑘, 𝜃)).

The weights 𝑤𝑘 = 𝑝target(𝑥𝑘)𝑝train(𝑥𝑘)
are called the importance of sample 𝑘, and the weighted estimation procedure is called
importance-weighted empirical risk minimization (IWERM).
Shimodaira [52] demonstrates (under mild regularity conditions on the involved

distributions and the model 𝑓(⋅)) that �̂�IWERM is a consistent estimator, i.e.,

plim(�̂�IWERM) = �̂�IWRM = argmin𝜃 Eptarget[𝓁(𝑦, 𝑓(𝑥, 𝜃))].
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Unfortunately, however, it is not unbiased for finite sample numbers 𝑁𝑆, as is illustrated in
fig. 2.2. To achieve an optimal bias-variance trade-off in the face of finite 𝑁𝑆, Sugiyama and
Kawanabe [59] propose to either use adaptive importance weighting, taking the weights 𝑤𝑘
to a power 0 ≤ 𝛽 ≤ 1 which is determined by empirical optimization of an information
criterion, or to use a classical regularization scheme.
The key to practically implementing IWERM is an efficient method for estimating the

importance, which is generally nontrivial. Anaive approachwouldbe to first estimate the two
involved probability distributions— 𝑝train(𝑥) and 𝑝target(𝑥)—from the respective datasets
and then evaluate their ratio. However, density estimation in high-dimensional spaces is
known to be a hard problem if no good parametric density models are available [24, 69].
For this reason, efficient algorithms have been developed which do not estimate the two
densities, but instead directly estimate the importance 𝑤𝑘 [35, 60].
The whole discussion in this section was framed in the context of misspecified models. Is

importance weighting irrelevant when using a correctly specified model? Indeed, Byrd and
Lipton [12] show, as might be expected, that when using over-parameterized deep neural
networks for classification tasks on separable datasets, the effect of importance weights on
the resulting model diminishes over successive training epochs. The authors thus question
the utility of using importance weighting in the over-parameterized learning regime.
Finally, note that there is a close connection between importance-weighted regression and

statistical linearization. In (multivariate) statistical linearization, the aim is to find�̂�, �̂�0 = argmin𝑀,𝑀0 Eptarget[(𝑓(𝑥) −𝑀𝑥 −𝑀0)2],
where 𝑓(𝑥) ∶ ℝ𝑛 → ℝ1 is some nonlinear function to be linearized, and 𝑝target(𝑥) is some
distribution over which the expected squared linearization error is to be minimized. The
difference to the regression setting discussed above is that in statistical linearization, both
the nonlinear function 𝑓(𝑥) to be approximated and the distribution 𝑝target(𝑥) are known
exactly. Statistical linearization has applications in nonlinear filtering and smoothing [28,
63], as will be discussed in some detail in section 2.3.3.

2.2 Inference in static models
Having introduced important basic concepts of statistical inference in the previous section,
the present section will briefly summarize a few well-known inference procedures in the
context of static systems. The classical ordinary least squares (OLS) estimator is introduced
in section 2.2.1, including the recursive least squares (RLS) algorithm. Section 2.2.2 then
discusses an important generalization of OLS, the weighted least squares (WLS) algorithm.
This algorithmwill be of particular importance in the context of this thesis for implementing
importance-weighted regression.

2.2.1 Ordinary Least Squares
Consider the static linear model 𝑦 = 𝑥𝜃 + 𝜀 (2.14)
with observations 𝑦 ∈ ℝ𝑁𝑆 and 𝑥 ∈ ℝ𝑁𝑆×𝑚, parameters 𝜃 ∈ ℝ𝑚 to be estimated, and (also
unknown) equation error 𝜀 ∈ ℝ𝑁𝑆 with covariance matrix Σ𝜀 ∈ ℝ𝑁𝑆×𝑁𝑆 . We will further
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denote the 𝑖-th row of𝑥, containing the values of all covariates 𝑥𝑗 at sample 𝑘, by 𝑥𝖳𝑘, 𝑥𝑘 ∈ ℝ𝑚.
Furthermore, assume

1. model correctness, i.e., there is a parameter vector 𝜃∗ for which the model (2.14)
correctly describes the stochastic process from which 𝑦 and 𝑥 are drawn,

2. strict exogeneity, i.e., E[𝜀 ∣ 𝑥] = 0, and
3. linear independence between all regressors in 𝑥.

Then, the ordinary least squares (OLS) estimator

�̂�OLS = argmin𝜃
𝑁𝑆∑
𝑘=1(𝑦𝑘 − 𝑥𝖳𝑘𝜃)2 = argmin𝜃 ‖𝑦 − 𝑥𝜃‖22= (𝑥𝖳𝑥)−1𝑥𝖳𝑦 (2.15)

is unbiased [79], i.e.,
E[�̂�OLS ∣ 𝑋] = 𝜃∗.

The variance-covariance matrix ΣOLS of this parameter estimate can be derived by error
propagation from the errors in the observations. To this end, recall that if𝑧 = 𝐴𝜉
with a fixed matrix 𝐴 ∈ ℝ𝑘×𝑘 and a stochastic variable 𝜉 ∈ ℝ𝑘 with variance-covariance
matrix Σ𝜉 , then the variance-covariance matrix of the stochastic variable 𝑧 is given byΣ𝑧 = 𝐴Σ𝜉𝐴𝖳. (2.16)

Thus, using (2.15) and (2.16), we obtainΣOLS ∶= Var[�̂�OLS ∣ 𝑥] = (𝑥𝖳𝑥)−1𝑥𝖳Σ𝜀𝑥(𝑥𝖳𝑥)−1. (2.17)

The OLS solution (2.15) can be efficiently obtained for large𝑁𝑆 by rearranging eq. (2.15) into
the so-called normal form (𝑥𝖳𝑥)�̂�OLS = 𝑥𝖳𝑦
and using any of the classical numerical methods for solving large, over-determined linear
systems, e.g., computing a QR decomposition of the normal matrix (𝑥𝖳𝑥).
If one additionally assumes spherical errors, i.e.,

Var[𝜀 ∣ 𝑥] = 𝜎2𝐼𝑁𝑆 ,
where 𝐼𝑁𝑆 is the identity matrix of dimension 𝑁𝑆, then eq. (2.17) reduces toΣOLS = 𝜎2(𝑋𝖳𝑋)−1.
Under these conditions, theGauss-Markov theorem states that the OLS estimator (2.15) is the
best linear unbiased estimator (BLUE) of 𝜃, meaning that its variance ΣOLS is optimal in the

Ordinary Least
Squares
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class of unbiased linear estimators [79]. Moreover, under the same assumptions, the reduced
chi-squared statistic 𝜒2𝜈 = �̂�𝖳�̂�𝜈 (2.18)

is an unbiased estimator of the equation error covariance, i.e.,

E[𝜒2𝜈 ∣ 𝑥] = 𝜎2.
In (2.18), �̂� = 𝑦 − 𝑥�̂�OLS
denotes the estimated equation error, and 𝜈 = 𝑁𝑆 −𝑚 are the degrees of freedom [79].
Finally, if one also assumes 𝜀𝑘 ∼𝒩(0, 𝜎2), i.e., the equation errors are normally distributed,

it follows that

1. the OLS estimator (2.15) is also normally distributed following �̂�OLS ∼𝒩(𝜃,ΣOLS) [79],
and

2. theOLS estimator (2.15) coincideswith themaximum likelihood (ML) estimator [26]10�̂�ML = argmax𝜃 𝑝(𝑦 ∣ 𝑋, 𝜃).
Correlation between rows of 𝑥, as is prevalent, e.g., if the columns of 𝑥 are time series,

is not a problem per se, and all of the above results still hold. Time series can, however,
lead to the assumption of strict exogeneity (E[𝜀 ∣ 𝑥] = 0) being violated. In this case, it is
reassuring to know that under the relaxed assumption of contemporaneous exogeneity, i.e.
E[𝜀𝑘 ∣ 𝑥𝑘] = 0 ∀ 𝑘, the OLS estimator (2.15), while no longer necessarily unbiased, is
still consistent. As a final remark on OLS, note that at no point we made any assumption
about the covariates’ origin. In particular, these may be arbitrary nonlinear transformations
of other variables or one another, enabling the efficient solution of nonlinear regression
problems—as long as they are linear in the regression parameters 𝜃 and fulfill the other
optimality criteria.
A recursive algorithm for calculating the OLS estimate �̂�OLS, the classical recursive least

squares (RLS) algorithm, can also easily be derived. The OLS solution based on observations
up until index 𝑘 is given by the solution to the normal equation(𝑥𝖳1∶𝑘𝑥1∶𝑘)�̂�(𝑘)OLS = 𝑥𝖳1∶𝑘𝑦1∶𝑘
or, in scalar form, ⎛⎜⎝

𝑘∑
𝑖=1𝑥𝑖𝑥𝖳𝑖 ⎞⎟⎠�̂�(𝑘)OLS = 𝑘∑

𝑖=1 𝑦𝑖𝑥𝑖.
Assuming that 𝑅𝑘 = 𝑋𝖳1∶𝑘𝑋1∶𝑘 is invertible, i.e., the solution is unique, we have𝑅𝑘−1 = 𝑅𝑘 − 𝑥𝑘𝑥𝖳𝑘.
10We already demonstrated this for the more general, nonlinear case in section 2.1.2.
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Algorithm 1: Recursive least squares algorithm (RLS)
1 Function RecursiveLeastSquares

Input :Mean �̂�(0)OLS =∈ ℝ𝑚 and covariance matrix 𝑃0 ∈ ℝ𝑚×𝑚 of the
initial parameter estimate 𝑝(𝜃), and observations 𝑦𝑘 ∈ ℝ and𝑥𝑘 ∈ ℝ𝑚, each for 𝑘 = 1,… , 𝑁𝑆.

Output :Mean �̂�(𝑘)OLS and covariance 𝑃𝑘 of the posterior distributions𝑝(𝜃 ∣ 𝑦1∶𝑘) for 𝑘 = 1,… , 𝑁𝑆.
2 begin
3 for 𝑘 = 1 to𝑁𝑆 do
4 𝑒𝑘 = 𝑦𝑘 − 𝑥𝖳𝑘�̂�(𝑘−1)OLS
5 𝑃𝑘 = 𝑃𝑘−1 − 𝑃𝑘−1𝑥𝑘𝑥𝖳𝑘𝑃𝑘−11+𝑥𝖳𝑘𝑃𝑘−1𝑥𝑘
6 𝐾𝑘 = 𝑃𝑘𝑥𝑘
7 �̂�(𝑘)OLS = �̂�(𝑘−1)OLS + 𝐾𝑘𝑒𝑘
8 end
9 end

Thus, it follows that

�̂�(𝑘)OLS = 𝑅−1𝑘 ⎛⎜⎝
𝑘−1∑
𝑖=1 𝑦𝑖𝑥𝑖 + 𝑦𝑘𝑥𝑘⎞⎟⎠= 𝑅−1𝑘 (𝑅𝑘−1�̂�(𝑘−1)OLS + 𝑦𝑘𝑥𝑘)= �̂�(𝑘−1)OLS + 𝑅−1𝑘 (𝑦𝑘𝑥𝑘 − 𝑥𝑘𝑥𝖳𝑘�̂�(𝑘−1)OLS )

= �̂�(𝑘−1)OLS + 𝑅−1𝑘 𝑥𝑘(𝑦𝑘 − 𝑥𝖳𝑘�̂�(𝑘−1)OLS ).
From the matrix inversion lemma,

𝑅−1𝑘 = 𝑅−1𝑘−1 − 𝑅−1𝑘−1𝑥𝑘𝑥𝖳𝑘𝑅−1𝑘−11 + 𝑥𝖳𝑘𝑅−1𝑘−1𝑥𝑘
and by substituting 𝑃𝑘 ∶= 𝑅−1𝑘 , we obtain algorithm 1, which represents an exact, recursive
method for calculating the OLS parameter estimate �̂�OLS. Note that in general, 𝑒𝑘 ≠ �̂�𝑘,
because the RLS residual 𝑒𝑘 is based on the parameter estimate �̂�(𝑘)OLS, taking only data up until
index 𝑘 into account. In section 2.3.2, a relationship between the Kalman filter algorithm
and the RLS algorithm is discussed; this relationship reveals that the RLS estimate can
be interpreted as a Gaussian random variable with mean �̂�(𝑘)OLS and covariance matrix 𝑃𝑘.
Furthermore, it also clarifies the meaning of the initial parameter values �̂�(0)OLS and 𝑃0: if
these are interpreted as the mean and covariance of a Gaussian prior over the parameters 𝜃,
then the resulting estimate is the MAP estimate with respect to that prior. To obtain the
classical OLS estimate, one must choose 𝑃0 = diag(∞,… ,∞).
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To conclude this section, the long-knownOLS estimator represents the optimal solution to
the static linear model identification problem from a large number of different perspectives.
The assumptions required for the optimality of the OLS estimator are comparatively weak,
and a huge number of conceptual extensions have been developed over the last century for
relaxing them even further, such as generalized [1] and total least squares [22, 57]. Weighted
least squares, which is a special case of generalized least squares, will be introduced in the
following section. The most critical assumption in the context of this thesis, however, is the
assumption of model correctness. If any of the model assumptions are violated, the remarks
given in section 2.1.5 and section 2.1.6 apply. Recall, in particular, fig. 2.2, which provides
an example of OLS applied in the face of model misspecification and dataset imbalance.

2.2.2 Weighted least squares
Instead of the ordinary least squares cost function

𝓁OLS(𝜃) = ‖𝑦 − 𝑥𝜃‖22 = 𝑁𝑆∑
𝑘=1(𝑦𝑘 − 𝑥𝖳𝑘𝜃)2 = 𝑁𝑆∑

𝑘=1|�̂�𝑘|2,
one may— for various reasons, which will be explored below—want to minimize the
weighted least squares (WLS) cost function

𝓁WLS(𝜃) = 𝑁𝑆∑
𝑘=1𝑤𝑘|�̂�𝑘|2 = ‖𝑊1∕2�̂�‖22, (2.19)

where 𝑤𝑘 ≥ 0 is the weight of the 𝑘th observation, and𝑊 = diag(𝑤1,… , 𝑤𝑁𝑆 ). Notice that
in the case of deterministic regression function and a Gaussian equation error distribution𝑞𝑘(𝑦𝑘 ∣ 𝑥𝑘, 𝜃, 𝜎2𝜀 ) =𝒩(𝑓(𝑥𝑘, 𝜃), 𝜎2𝜀 ),
eq. (2.19) is identical to the weighted log-likelihood

𝑁𝑆∑
𝑘=1𝑤𝑘 log 𝑞𝑘(𝑦𝑘 ∣ 𝑥𝑘, 𝜃, 𝜎2𝜀 ),

see section 2.1.2. Thus, in this case, weighted least squares (WLS) estimation coincides with
weighted maximum likelihood (WML) estimation [17, 40, 74].
By calculating the gradient of eq. (2.19) and setting it to zero, one obtains the weighted

normal equation (𝑥𝖳𝑊𝑥)�̂�WLS = 𝑥𝖳𝑊𝑦.
The WLS optimal parameter estimate is then given by�̂�WLS = (𝑥𝖳𝑊𝑥)−1𝑥𝖳𝑊𝑦 = ( ∼𝑋𝖳 ∼𝑋)−1 ∼𝑋𝖳 ∼𝑦,
which is the standard OLS solution with

∼𝑋 = √𝑊 ⋅ 𝑥 = diag
(√𝑤1,… ,√𝑤𝑁𝑆 )) ⋅ 𝑥

Weighted
Maximum
Likelihood
Estimation
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and ∼𝑦 = √𝑊 ⋅ 𝑦.
Following the same argument as in the OLS case, the variance-covariance matrix of this
estimator is given byΣWLS ∶= Var[�̂�WLS ∣ 𝑥] = (𝑥𝖳𝑊𝑥)−1𝑥𝖳𝑊Σ𝜀𝑊𝖳𝑥(𝑥𝖳𝑊𝖳𝑥)−1. (2.20)

Now, a distinction can be made between four cases.

Basic OLS: 𝑊 = 𝐼 and Σ𝜀 = 𝜎2𝐼. All measurements are weighted equally, and equation
errors are assumed to be homoscedastic and uncorrelated. In this case, eq. (2.20)
reduces to ΣWLS = ΣOLS = 𝜎2(𝑥𝖳𝑥)−1
and the estimator is the BLUE, as described in the previous section.

Classical WLS, Σ𝜀 known: 𝑊 = Σ−1𝜀 . In classical WLS, equation errors are assumed to be
heteroscedastic (but still uncorrelated, whence𝑊 is diagonal), i.e., the equation error
covariance varies between samples. It can be shown that in this case, WLS with𝑊 =Σ−1𝜀 , i.e., weighting samples by the inverse of their respective equation error covariance,
yields the BLUE estimator [1]. Under this assumption,ΣWLS = (𝑋𝖳𝑊𝑋)−1.
Note that in this setting, the OLS estimator (2.15) is still unbiased, but it is no longer
efficient.

Classical WLS, but Σ𝜀 unknown. In practice, of course, the equation error covariance Σ𝜀
is often unknown andmust be estimated as well. In this case, various so-called feasible
generalized least squares (FGLS)methods can be applied, which estimate both Σ𝜀 and𝜃 from the data [79].11

WLS, but still assuming Σ𝜀 = 𝜎2𝐼. One might also want to weight samples differently for
reasons other than a varying measurement precision. In this case, still assuming
homoscedastic and uncorrelated measurements, we have to settle for eq. (2.20) for the
estimator covariance. In this case, 𝜎2 is usually approximated by the weighted
reduced chi-squared statistic 𝜎2 ≈ 𝜒2𝜈 = �̂�𝖳𝑊�̂�𝜈 ,
where 𝜈 = 𝑛 −𝑚 are again the degrees of freedom. Note that using such an estimator
only makes sense if one of the OLS/WLS assumptions is violated, because otherwise𝑊 = Σ−1𝜀 yields the BLUE. One possible reason for such an approach is the
implementation of IWERM in the presence of model mismatch and an imbalanced
dataset, as discussed in section 2.1.6.

11Note that generalized least squares (GLS) accounts not only for heteroscedasticity, as discussed here, but also
for possible correlations in the equation error between samples. It is thus a further generalization of WLS.
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2.3 State inference in dynamical models

2.3 State inference in dynamical models
While the previous section considered estimation procedures for static models, both the
present and the following section are concerned with dynamic models, i.e., systems which
describe the evolution of some quantity over time. The present section explores the task of
estimating the unknown states in a known dynamical system given a model of that
system—a task known as state estimation—, whereas the following section concerns the
identification of the dynamical model itself—a task known as system identification.
Section 2.3.1 introduces the famous Kalman filter and smoother for linear systems. In
section 2.3.2, the application of Kalman filtering and smoothing for time-varying parameter
estimation in linear quasi-static systems will be discussed. Finally, state estimation in
nonlinear dynamic systems requires more sophisticated algorithms and is the subject of
section 2.3.3.

2.3.1 The linear Kalman filter and smoother
The celebrated Kalman filter, sometimes also called Kalman-Bucy filter or
Stratonovich-Kalman-Bucy filter, has been developed around 1960 by a number of
contributors including Kalman [33, 34], Bucy [34], Stratonovich [58] and Swerling [61].
Despite its long history, the Kalman filter is still highly relevant today in almost all branches
of science and engineering, and it has even been hypothesized that the human brain
performs a variant of Kalman filtering [20, 78]. The modern statistical field of Bayesian
structural time series modeling makes heavy use of Kalman filters [11], and they are also
being used to efficiently implement modern probabilistic non-parametric inference
schemes [13, 77].
TheKalmanfilter is the optimal estimator of the states 𝜃𝑘 ∈ ℝ𝑁𝜃 in the linear, discrete-time

state-space model 𝜃𝑘 = 𝐴𝑘𝜃𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝜂𝑘𝑦𝑘 = 𝐶𝑘𝜃𝑘 + 𝜈𝑘, (2.21)

given an initial estimate 𝜃0 ∼ 𝒩(�̂�+0 , 𝑃+0 ) and measurements 𝑦𝑖 ∈ ℝ𝑁𝑦 up to time
index 𝑖 = 𝑘. In eq. (2.21), 𝜈𝑘 ∼ 𝒩(0,Σ𝜈,𝑘) and 𝜂𝑘 ∼ 𝒩(0,Σ𝜂,𝑘) are measurement and
process noise, respectively. The matrices 𝐴𝑘, 𝐵𝑘, 𝐶𝑘,Σ𝜈,𝑘 and Σ𝜂,𝑘 are assumed to be known,
as well as the input signal 𝑢𝑘 ∈ ℝ𝑁𝑢 .12 All of the matrices may be time-varying or constant.
The Kalman filter represents an efficient recursive algorithm for evaluating the posterior
distribution of the states at time 𝑘, 𝑝(𝜃𝑘 ∣ 𝑦1, 𝑦2,… , 𝑦𝑘). Given the posterior
distribution 𝑝(𝜃𝑘−1 ∣ 𝑦1, 𝑦2,… , 𝑦𝑘−1) at the previous time step, it follows from eq. (2.21) that𝑝(𝜃𝑘 ∣ 𝑦1∶𝑘) = 𝑝(𝜃𝑘−1 ∣ 𝑦1∶𝑘−1) ⋅ 𝛿(𝜃𝑘 − 𝐴𝑘𝜃𝑘−1 − 𝐵𝑘𝑢𝑘 − 𝜂𝑘)⋅𝛿(𝑦𝑘 − 𝐶𝑘𝜃𝑘 − 𝜈𝑘) ⋅ 𝑝(𝜂𝑘−1) ⋅ 𝑝(𝜈𝑘), (2.22)

where 𝛿(⋅) denotes the Dirac delta distribution. If both the previous posterior distribution
and the noise distributions are Gaussian, it follows from eq. (2.22) that the next posterior
12Stochastic input signals can be represented in this model as well, although this requires increasing the

dimension of the state space.

Dynamic
Models

State
Estimation
System
Identification

Kalman Filter

33



Chapter 2 Preliminaries A: Statistical inference

Algorithm 2: Linear Kalman filter
1 Function KF

Input :Mean �̂�+0 ∈ ℝ𝑁𝜃 and covariance 𝑃+0 ∈ ℝ𝑁𝜃×𝑁𝜃 of the initial
state estimate 𝑝(𝜃0), matrices 𝐴𝑘, 𝐵𝑘, 𝐶𝑘,Σ𝜈,𝑘 and Σ𝜂,𝑘 of
suitable dimensions, as well as measurements 𝑦𝑘 ∈ ℝ𝑁𝑦 and
inputs 𝑢𝑘 ∈ ℝ𝑁𝑢 , each for 𝑘 = 1,… , 𝑁𝑆.

Output :Means �̂�+𝑘 and covariances 𝑃+𝑘 of the posterior distributions𝑝(𝜃𝑘 ∣ 𝑦1∶𝑘) for 𝑘 = 1,… , 𝑁𝑆.
2 begin
3 for 𝑘 = 1 to𝑁𝑆 do

// State prediction using eq. (2.21)
4 �̂�−𝑘 = 𝐴𝑘�̂�+𝑘−1 + 𝐵𝑘𝑢𝑘
5 𝑃−𝑘 = 𝐴𝑘𝑃+𝑘−1𝐴𝖳𝑘 + Σ𝜂,𝑘

// Recursive posterior update using eq. (2.22)
6 𝑒𝑘 = 𝑦𝑘 − 𝐶𝑘�̂�−𝑘
7 Σ𝑒,𝑘 = 𝐶𝑘𝑃−𝑘 𝐶𝖳𝑘 + Σ𝜈,𝑘
8 𝐾𝑘 = 𝑃−𝑘 𝐶𝖳𝑘Σ−1𝑒,𝑘
9 �̂�+𝑘 = �̂�−𝑘 + 𝐾𝑘𝑒𝑘
10 𝑃+𝑘 = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃−𝑘
11 end
12 end

will be Gaussian as well: 𝑝(𝜃𝑘 ∣ 𝑦1, 𝑦2,… , 𝑦𝑘) =𝒩(�̂�+𝑘 , 𝑃+𝑘 ).
Hence, by induction, the posterior distributions at all time steps are Gaussian, and an
estimation scheme can be efficiently implemented by operating on the parameters of these
Gaussian distributions. If one then chooses the mean �̂�+𝑘 of the posterior distribution as the
state estimate, the resulting algorithm is the classical Kalman filter algorithm [33, 50, 55],
listed in algorithm 2. Moreover, the Kalman filter also yields the covariances 𝑃+𝑘 of the
(Gaussian) posterior distribution.
Given that the Kalman filter simply represents an efficient procedure for calculating the

exact mean of the posterior state distribution, it is optimal in many ways: if the noise and
initial state estimate are Gaussian, it simultaneously maximizes 𝑝(�̂�+𝑘 ∣ 𝑦1∶𝑘) (making it the
MAP estimator) and minimizes E[(�̂�+𝑘 − 𝜃𝑘)𝖳Σ−1𝜂,𝑘(�̂�+𝑘 − 𝜃𝑘)] (making it the MMSE
estimator) [55]. Even if the noise is not assumed to be Gaussian (but still zero-mean and
white), the Kalman filter is a linearMMSE estimator, i.e., the optimal linear estimator in the
MMSE sense [55].
For practical applications, a number of modifications to the original Kalman filter

algorithm may be required to obtain a stable and robust algorithm. Some of these
modifications, which will be used later in this thesis, are discussed in the following.
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Symmetric positive definite state covariance matrices. A frequent problem with the
formulation 𝑃+𝑘 = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃−𝑘
of the covariance update formula—used in the last step of algorithm 2— is that the
state covariance matrix 𝑃+𝑘 may loose symmetry or positive definiteness, both of which
are necessary for it to be a proper covariance matrix. This problem is easily solved
by employing analytical reformulations of the covariance update equation, which are
numerically more favorable. Various versions have been proposed; we will employ the
Joseph stabilized covariance update𝑃+𝑘 = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃−𝑘 (𝐼 − 𝐾𝑘𝐶𝑘)𝖳 + 𝐾𝑘Σ𝜈,𝑘𝐾𝖳𝑘. (2.23)

This formulation guarantees that𝑃+𝑘 is symmetric positive definite, as long as 𝑃−𝑘 is [55].
Matrix inversions in the update step. Another step of the basic algorithm which

frequently causes numerical problems is the matrix inversion that is required to
evaluate the expression 𝐾𝑘 = 𝑃−𝑘 𝐶𝖳𝑘(𝐶𝑘𝑃−𝑘 𝐶𝖳𝑘 + Σ𝜈,𝑘)−1
for the Kalman gain 𝐾𝑘 in algorithm 2. (Note that this is an inversion of an 𝑁𝑦 ×𝑁𝑦
matrix, which thus only causes problems when 𝑁𝑦 > 1, i.e. when more than one
measurement signal shall be taken into account.) It turns out that if the measurement
noise covariance matrix Σ𝜈,𝑘 is diagonal or static, then, as a consequence of thematrix
inversion lemma, the matrix inversion can be replaced by a sequence of 𝑁𝑦 scalar
update steps [55]. This is known as sequential Kalman filtering and described in
detail in algorithm 3. There, 𝐶𝑖𝑘 denotes the 𝑖th row of 𝐶, 𝑦𝑖𝑘 the 𝑖th entry of the
measurement vector 𝑦𝑘, and Σ𝜈,𝑘𝑖𝑖 the 𝑖th diagonal entry of the measurement noise
covariance matrix Σ𝜈,𝑘. Simon [55] also discusses a way of applying algorithm 3 to
systems with non-diagonal but static measurement noise covariance matrices.

Missing data. While the two previous modifications merely addressed numerically
favorable but analytically equivalent reformulations of the basic algorithm, missing
data pose a challenge that is simply not handled by the basic algorithm. What should
happen if an entry of the measurement vector 𝑦𝑘 is unavailable or an entry of the
measurement matrix 𝐶𝑘 is unknown? If all of the measurements at time index 𝑘 are
unavailable or the complete measurement matrix is unknown, then the solution is
simple. In this case, a correction of the predicted state distribution 𝑝(𝜃𝑘 ∣ 𝑦1∶𝑘−1)
based on the measurement 𝑦𝑘 is simply not possible, and hence the posterior state
distribution at step 𝑘 is equal to the predicted state distribution: the dynamical model
is used to predict the state evolution in open loop, without corrections from
measurements.
If only some entries are missing, e.g., one of multiple measurement signals is subject to
a temporary failure, a slightlymore complex approach is required. In this case, a simple
approach—assuming a diagonalmeasurement noise covariancematrixΣ𝜈,𝑘—is to set
the corresponding diagonal entry Σ𝜈,𝑘𝑖𝑖 of the measurement noise covariance matrix
to ∞. It follows that in algorithm 3, 𝐾(𝑖)𝑘 = 0, 𝐾(𝑖)𝑘 𝐶𝑘𝑖 = 0 and 𝐾(𝑖)𝑘 Σ𝜈,𝑘𝑖𝑖(𝐾(𝑖)𝑘 )𝖳 =

Joseph
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Algorithm 3: Sequential state update step for the Kalman filter
1 Function SequentialStateUpdate

Input :Mean �̂�−𝑘 ∈ ℝ𝑁𝜃 and covariance 𝑃+𝑘 ∈ ℝ𝑁𝜃×𝑁𝜃 of the
predicted state estimate 𝑝(𝜃𝑘 ∣ 𝑦1∶𝑘−1), matrices 𝐶𝑘 and Σ𝜈,𝑘
of suitable dimensions, as well as measurements 𝑦𝑘 ∈ ℝ𝑁𝑦 .
The matrix Σ𝜈,𝑘 must be diagonal.

Output :Mean �̂�+𝑘 and covariance 𝑃+𝑘 of the posterior distribution𝑝(𝜃𝑘 ∣ 𝑦1, 𝑦2,… , 𝑦𝑘).
2 begin
3 �̂�+(0)𝑘 = �̂�−𝑘
4 𝑃+(0)𝑘 = �̂�−𝑘

// Iteratively update based on the individual measurements
5 for 𝑖 = 1 to𝑁𝑦 do

// Scalar update, requiring no matrix inversion

6 𝐾(𝑖)𝑘 = 𝑃+(𝑖−1)𝑘 𝐶𝖳𝑘𝑖𝐶𝑘𝑖𝑃+(𝑖−1)𝑘 𝐶𝖳𝑘𝑖+Σ𝜈,𝑘𝑖𝑖
7 �̂�+(𝑖)𝑘 = �̂�+(𝑖−1)𝑘 + 𝐾(𝑖)𝑘 (𝑦𝑘𝑖 − 𝐶𝑘𝑖�̂�+(𝑖−1)𝑘 )

// Joseph stabilized covariance update based on eq. (2.23)
8 𝑃+(𝑖)𝑘 = (𝐼 − 𝐾(𝑖)𝑘 𝐶𝑘𝑖)𝑃+(𝑖−1)𝑘 (𝐼 − 𝐾(𝑖)𝑘 𝐶𝑘𝑖)𝖳 + 𝐾(𝑖)𝑘 Σ𝜈,𝑘𝑖𝑖(𝐾(𝑖)𝑘 )𝖳
9 end
10 �̂�+𝑘 = �̂�+(𝑁𝑦)𝑘
11 𝑃+𝑘 = 𝑃+(𝑁𝑦)𝑘
12 end
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0. This method, of course, generalizes to the simple case discussed above, where all
measurement signals are missing.

State constraints For various reasons, it may be desirable to consider a set of inequality
constraints 𝐷𝜃 ≤ 𝑑 (2.24)

for the possible values of the states. A simple and efficient method to solve the
constrained state estimation problem has been proposed by Simon and Chia [54]. At
each time step, the unconstrained posterior state estimate �̂�+𝑘 is simply projected onto
the constraint surface. To this end, one solves the optimization problem�̃�𝑘 = argmin𝑥 (𝑥 − �̂�+𝑘 )𝖳𝑊(𝑥 − �̂�+𝑘 ), such that 𝐷𝜃 ≤ 𝑑, (2.25)

where𝑊 is any symmetric positive definite weighting matrix. In general, eq. (2.25)
represents a quadratic programming problemwhich can be solved efficiently using any
of the standard solvers. The resulting constrained state estimator has various favorable
properties and can generally be regarded as uniformly superior to the unconstrained
estimator, i.e., the standard linear Kalman filter (if constraints are present, that is) [54].
In the simplest case where only lower and upper bounds lb ∈ ℝ𝑁𝜃 and ub ∈ ℝ𝑁𝜃 on
the states are to be respected, eq. (2.25) simply reduces to�̃�𝑘𝑖 = min(max(�̂�+𝑘𝑖, lb𝑖),ub𝑖) ∀ 𝑖 = 1,… , 𝑁𝜃, (2.26)

regardless of the choice of𝑊. One instance where this is particularly useful is when
many data points are missing or faulty: in this case, depending on the properties of
the state-space model, an unconstrained state estimate may diverge and lead to bad
filter performance or numerical problems. Finally, note that the constrained linear
state estimation approach described here is certainly not optimal: to derive a strictly
optimal estimator, one needs to depart from the Gaussian framework since constrained
state estimates can no longer be Gaussian. Doing so incurs a very significant increase
in computational complexity, however. For a comprehensive overview of constrained
filtering methods, refer to Simon [53].

Incorporating all of the above improvements into the original algorithm 2, we obtain a
practical, robust, and computationally efficient version of the Kalman filter algorithm.
The Kalman filter is a causal estimator: it only uses measurements up to time index 𝑘 for

estimating the value of the states at that time. An estimator that estimates the posterior
distribution 𝑝(𝜃𝑘 ∣ 𝑦1∶𝑁𝑆 ) of the states given all measurements is called a (fixed-interval)
Kalman smoother. Given the same assumptions as for the Kalman filter, the smoothed
distribution can also be computed efficiently, usually using a forward-backward recursion.
Various analytically equivalent algorithms with differing numerical properties have been
proposed in the literature [50, 55, 70]. One classical algorithm is the linear
Rauch-Tung-Striebel smoother (RTS) [48], which is provided in algorithm 4.
It enjoys the same optimality properties as the Kalman filter: it is both a MAP and MMSE

estimator.
Until this point, the Kalman filter and smoother have been discussed from a probabilistic

point of view. Both can also be derived as the solutions to an optimization problem, an
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Algorithm 4: Linear Rauch-Tung-Striebel smoother (RTS)
1 Function RTS

Input :Mean �̂�+0 ∈ ℝ𝑁𝜃 and covariance 𝑃+0 ∈ ℝ𝑁𝜃×𝑁𝜃 of the initial
state estimate 𝑝(𝜃0), matrices 𝐴𝑘, 𝐵𝑘, 𝐶𝑘,Σ𝜈,𝑘 and Σ𝜂,𝑘 of
suitable dimensions, as well as measurements 𝑦𝑘 ∈ ℝ𝑁𝑦 and
inputs 𝑢𝑘 ∈ ℝ𝑁𝑢 , each for 𝑘 = 1,… , 𝑁𝑆.

Output :Means �̂�𝑠𝑘 and covariances 𝑃𝑠𝑘 of the posterior
distributions 𝑝(𝜃𝑘 ∣ 𝑦1∶𝑁𝑆 ) for 𝑘 = 0, 1,… , 𝑁𝑆.

2 begin
// Forward filtering using the standard Kalman filter

3 Run KF

// Backward smoothing using the Rauch-Tung-Striebel smoother
4 �̂�𝑠𝑁𝑆 = �̂�+𝑁𝑆
5 for 𝑘 = 𝑁𝑆 − 1 to 0 do
6 Solve 𝑆𝑘𝑃−𝑘+1 = 𝑃+𝑘𝐴𝖳𝑘 for 𝑆𝑘
7 𝑃𝑠𝑘 = 𝑃+𝑘 + 𝑆𝑘(𝑃𝑠𝑘+1 − 𝑃−𝑘+1)𝑆𝖳𝑘
8 �̂�𝑠𝑘 = �̂�+𝑘 + 𝑆𝑘(�̂�𝑠𝑘+1 − �̂�−𝑘+1)
9 end
10 end

alternative perspective that will prove valuable in the following. Recall that we sketched the
derivation of the Kalman smoother as the solution to the MAP estimation problem�̂�𝑠0∶𝑁𝑆 = argmax𝜃0∶𝑁𝑆 𝑝(𝜃0∶𝑁𝑆 ∣ 𝑦1∶𝑁𝑆 )

= argmax𝜃0∶𝑁𝑆 𝑝(𝜃0∶𝑁𝑆 , 𝑦1∶𝑁𝑆 )𝑝(𝑦1∶𝑁𝑆 )= argmax𝜃0∶𝑁𝑆 𝑝(𝜃0∶𝑁𝑆 , 𝑦1∶𝑁𝑆 ). (2.27)

Under the Gaussian assumption, the logarithm of the joint likelihood can be expressed
analytically as [49]

log𝑝(𝜃0, 𝜃1,… , 𝜃𝑁𝑆 , 𝑦1,… , 𝑦𝑁𝑆 ) = −12 𝑁𝑆∑
𝑘=1

[(𝑦𝑘 − 𝐶𝑘𝜃𝑘)𝖳Σ−1𝜈,𝑘(𝑦𝑘 − 𝐶𝑘𝜃𝑘) + log|Σ𝜈,𝑘|]
− 12 𝑁𝑆−1∑

𝑘=0
[(𝜃𝑘+1 − 𝐴𝑘+1𝜃𝑘 − 𝐵𝑘+1𝑢𝑘+1)𝖳Σ−1𝜂,𝑘+1(𝜃𝑘+1 − 𝐴𝑘+1𝜃𝑘 − 𝐵𝑘+1𝑢𝑘+1) + log|Σ𝜂,𝑘+1|]

− 12[(𝜃0 − �̂�+0 )𝖳(𝑃+0 )−1(𝜃0 − �̂�+0 ) + log|𝑃+0 | +𝑁𝑆(𝑁𝜃 +𝑁𝑦) log 2𝜋] (2.28)

and thus, the Kalman smoother can also be formulated as an analytical solution to the
problem of maximizing eq. (2.28).
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2.3.2 Time-varying parameter estimation using a Kalman filter
The Kalman filter can be seen as a generalization of the recursive least squares (RLS)
algorithm (discussed in section 2.2.1) to dynamic models. To see this, consider the
state-space model 𝜃𝑘 = 𝜃𝑘−1 + 𝜂𝑘𝑦𝑘 = 𝑥𝖳𝑘𝜃𝑘 + 𝜈𝑘, (2.29)

where 𝜃𝑘 are the states, 𝑦𝑘 ∈ ℝ one-dimensional measurements, and 𝑥𝖳𝑘 now denotes a
time-varying measurement matrix. If one assumes that Σ𝜂 = 0 and Σ𝜈 = Σ𝜀, applying the
Kalman filter (algorithm 2) to this model yields exactly the recursive least squares algorithm
(algorithm 1) for the static regression problem𝑦 = 𝑥𝜃 + 𝜀
with 𝜀 ∼ 𝒩(0,Σ𝜀). The same equivalence can also be demonstrated for the more general
case of a multivariate target variable 𝑦𝑘 [37, p. 367]. Interpreting the RLS algorithm as a
special case of the Kalman filter also justifies the interpretation of the RLS estimate as a
Gaussian variable with mean �̂�(𝑘)OLS and covariance matrix 𝑃𝑘. The equivalence to the least
squares problem can be derived easily by setting Σ𝜂 = 0, Σ𝜈 = Σ𝜀 and 𝑃+0 = diag(∞,… ,∞) in
eq. (2.28), which leaves us with the classical (multiple) least-squares optimization problem�̂�+𝑁𝑆 = argmax𝜃𝑁𝑆 𝑝(𝜃𝑁𝑆 ∣ 𝑦1∶𝑁𝑆 )

= argmax𝜃=𝜃0=𝜃1=…=𝜃𝑁𝑆 −12 𝑁𝑆∑
𝑘=1(𝑦𝑘 − 𝐶𝑘𝜃)𝖳Σ−1𝜀 (𝑦𝑘 − 𝐶𝑘𝜃).

The equivalence stated above holds for the case of static parameter values since it is based
on the assumption that Σ𝜂 = 0. To obtain an efficient, recursive parameter estimation
algorithm for time-varying systems, one may simply use the same state-space model but
allows for Σ𝜂 > 0. The expected velocity of parameter changes can be incorporated into the
model by setting the corresponding diagonal entries of Σ𝜂 appropriately. This also easily
enables incorporating different velocities of change for different parameters or expected
correlations between changes in different parameters. Of course, smoothers such as the RTS
smoother can be employed to further improve the estimates by taking future measurements
into account, if that is permitted by the application. This is, thus, a powerful and general
method for time-varying multivariate parameter estimation, and it will be further explored
in chapter 6.

2.3.3 Kalman filtering and smoothing in nonlinear systems
What happens if the state-space model for which the states are to be estimated is nonlinear?
Consider the model13 𝜃𝑘 = 𝑓𝑘(𝜃𝑘−1) + 𝜂𝑘𝑦𝑘 = 𝑔𝑘(𝜃𝑘) + 𝜈𝑘 (2.30)

13Inputs are omitted here for brevity and because they are not used in this thesis. However, input nonlinearities
can be treated equivalently to state transition nonlinearities.
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with arbitrary linear or nonlinear (vector-valued) functions 𝑓𝑘(⋅) and 𝑔𝑘(⋅). The classical
Kalman filter cannot be used to estimate the states in this model since it relies on the
linearity and normality assumptions. Note that even if the initial state estimate and the
noise distributions are normal, the posterior distributions of the states can be arbitrarily
distorted due to being nonlinearly transformed. For general nonlinearities, it is thus no
longer possible to use parametric models for the posterior state distributions if exact
inference is desired. One option is to drop the use of parametric models and use
particle-based methods instead, resulting in a family of methods that are usually called
particle filters [6, 50, 55]. These methods, however, are computationally much more
demanding and, in particular, suffer heavily from the curse of dimensionality. They are,
therefore, often not practical for larger state-space dimensions. Another option is to content
oneself with approximate inference in exchange for being able to stay within the
computationally efficient parametric framework. The most prominent examples of this
family of nonlinear filtering methods are the ones that linearize any nonlinearities and,
thus, stay within the linear-Gaussian framework. The most well-known members of this
family are the extended and unscented Kalman filters (EKF, UKF) [55, 73].
To simplify the following discussion, consider the isolated nonlinearity𝑦 = 𝑓(𝑥)

where the prior distribution 𝑝(𝑥) is known and a Gaussian approximation 𝑞(𝑦) to the
posterior distribution 𝑝(𝑦) is to be computed. Any transformation that maps a Gaussian
onto another Gaussian distribution can be represented as a linear transformation, and
hence, any approach that results in a Gaussian approximation of the posterior is equivalent
to linearizing the nonlinearity: 𝑓(𝑥) ≈ 𝑀𝑥 +𝑀0.
The EKF approach is to simply linearize 𝑓(𝑥) around the mean 𝜇𝑥 of the prior
distribution 𝑝(𝑥). This is, however, not generally the optimal linearization strategy, in the
sense that it does not minimize the discrepancy between the true posterior 𝑝(𝑦) and its
approximation 𝑞(𝑥) in any principled way. For example, one might prefer to choose a
procedure which minimizes the expected linearization error, i.e.,�̂�, �̂�0 = argmin𝑀,𝑀0 Ep(x)[(𝑓(𝑥) −𝑀𝑥 −𝑀0)2]
in the spirit of risk minimization (see sections 2.1.2 and 2.1.6). This optimization problem is
called statistical linearization, and it can be shown [50] that the solution is given by those
linearization parameters for which the first and second-order moments of the posterior
distribution 𝑝(𝑦) are matched exactly. Moment matching in this way is also equivalent to
minimizing the Kullback-Leibler divergence between the true posterior and its
approximation [27, 41], i.e.,

argmin𝑀,𝑀0 Ep(x)[(𝑓(𝑥) −𝑀𝑥 −𝑀0)2] = argmin𝑀,𝑀0 DKL(𝑝(𝑦) ‖ 𝑞(𝑥)).
Thus, one is left with the task of approximating the first two moments of the posterior
distribution: 𝜇𝑦 ∶= E[𝑦] = ∫ℝ𝑛 𝑓(𝑥)𝑝(𝑥) d𝑥 (2.31)
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and

Σ𝑦 ∶= Var[𝑦] = ∫ℝ𝑛(𝑓(𝑥) − 𝜇𝑦)𝖳(𝑓(𝑥) − 𝜇𝑦)𝑝(𝑥) d𝑥. (2.32)

Finding good numerical approximations to equations of the form (2.31), (2.32) is, of course,
the sole subject of numerical quadrature, and many different quadrature rules of the form

∫ 𝑓(𝑥) 𝜌(𝑥) d𝑥 ≈∑
𝑖=1𝑁𝜁𝑤𝑖 𝑓(𝜁𝑖)

have been developed over the decades. Here, 𝑤𝑥 is some known weighting function that is
known a priori, the 𝜁𝑖 are called quadrature points, and the 𝑤𝑖 are called quadrature weights.
A method for choosing the quadrature points and weights is called a quadrature rule. For
the Gaussian weight function 𝜌(𝑥) = 𝑝(𝑥) ∼𝒩(0, 𝐼), the proposed quadrature rules include
the unscented transform [73], the cubature transform [5] and the Gauß-Hermite integration
rule [4], among many others. One way to quantify the accuracy of different quadrature rules
is to compare the polynomial degree up until which functions 𝑓(𝑥) can be integrated exactly.
For example, if a quadrature rule is exact for polynomials up to order three and 𝑓(𝑥) is a
quadratic polynomial, themean𝜇𝑦 ismatched exactly, but the covarianceΣ𝑦 is not—because(𝑓(𝑥) − 𝜇𝑦)𝖳(𝑓(𝑥) − 𝜇𝑦) is a polynomial of order four. Interestingly, it has been noted that
empirically, quadrature rules that are exact up to order three are often sufficient, and little
performance can be gained by using higher-order quadrature rules [5].
Each quadrature rule gives rise to a corresponding approximate nonlinear Kalman filter

and smoother. The filtering algorithms are simply obtained by replacing any occurrences of𝐴𝑘 and 𝐶𝑘 by the results of the linearization procedure (linearizing about 𝑞(�̂�+𝑘−1) and �̂�−𝑘 ,
respectively), and accounting for the linearization offset terms in lines 4 and 6 of algorithm 2.
To obtain the corresponding approximate nonlinear smoothing algorithm, any standard
linear smoother implementation can be used, and the linearization used in the forward
(filtering) pass is simply reused.
So far, it was assumed that no information or measurement of the output 𝑦 of the

nonlinearity is given. In the state-space model setting, however, past, present, and future
measurements provide information about states, and thus, the expected statistical
linearization error can be reduced by exploiting this additional information. Various
iterative approximate nonlinear filtering and smoothing schemes have been proposed that
exploit this insight [7, 62]. One very simple method is to perform a full run of a standard
approximate nonlinear filter and smoother and then use the resulting, smoothed state
estimates to obtain a more accurate linearization of the nonlinearities. This process can be
repeated until convergence. The author of this thesis has (co-)authored two publications on
the expression of iterative filtering and smoothing schemes as message passing in factor
graphs [28, 46], showing that these methods achieve improved accuracy when compared to
a standard, non-iterative EKS or UKS. For brevity’s sake, these methods will not be further
discussed in this thesis.
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2.4 Maximum-likelihood parameter inference in dynamical
models
While the previous section presented solutions for inferring the hidden states of a dynamical
system from measurements, we always assumed the dynamical system itself to be known.
This is, of course, rarely the case, which is why successful system identification is in almost all
cases a necessary prerequisite for performing state estimation. System identification has been
the subject of intensive research for decades [37, 51]. Notably, all of the statistical inference
paradigms discussed in section 2.1.2 are applicable to the system identification problem as
well. While a broad overview of system identification techniques is beyond the scope of this
thesis, we will briefly discuss the application of the maximum-likelihood paradigm to system
identification. This section is largely based on [50, Chap. 12].

2.4.1 Maximum likelihood estimation in general state-space models
Following the definition given in eq. (2.1), maximum likelihood (ML) parameter estimates
are defined by �̂�ML = argmax𝜓 𝑞(𝑦 ∣ 𝜓), (2.33)

where 𝑦 are the available observations, 𝜓 the model parameters to be estimated, and𝑞(𝑦 ∣ 𝜓) denotes the probabilistic model family under consideration.14 In a dynamic setting,
as opposed to the static regression setting considered in section 2.1.2, the individual
measurements 𝑦𝑘 cannot be considered statistically independent of one another, and hence
the simple decomposition of the likelihood used in eq. (2.2) is not feasible. However, the
so-called prediction error decomposition [50, p. 176]

𝑞(𝑦 ∣ 𝜓) = 𝑞(𝑦1 ∣ 𝜓) 𝑁𝑆∏
𝑘=2 𝑞(𝑦𝑘 ∣ 𝑦1∶𝑘−1, 𝜓) (2.34)

holds nevertheless. The challenge is now to compute 𝑞(𝑦𝑘 ∣ 𝑦1∶𝑘−1, 𝜓).
Assuming that the hidden states 𝜃𝑘 of the system satisfy the Markov property𝑞(𝜃𝑘 ∣ 𝜃1∶𝑘−1) = 𝑞(𝜃𝑘 ∣ 𝜃𝑘−1) (2.35)

and that each measurement 𝑦𝑘 is conditionally independent of all previous measurements
given the state 𝜃𝑘−1, i.e., 𝑞(𝑦𝑘 ∣ 𝑦1∶𝑘−1, 𝜃𝑘) = 𝑞(𝑦𝑘 ∣ 𝜃𝑘), (2.36)

it follows that

𝑞(𝑦𝑘 ∣ 𝑦1∶𝑘−1, 𝜓) = ∫ℝ𝑁𝜃
𝑞(𝑦𝑘 ∣ 𝜃𝑘, 𝜓) 𝑞(𝜃𝑘 ∣ 𝑦1∶𝑘−1, 𝜓) d𝜃𝑘. (2.37)

14In the formulation in section 2.1.2, covariates 𝑥 were also assumed to be given. In the system identification
setting, there is only one stream of measurements 𝑦 available to perform the estimation; hence the slight
difference between eq. (2.1) and eq. (2.33).
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Note that 𝑞(𝜃𝑘 ∣ 𝑦1∶𝑘−1, 𝜃) is precisely the quantity that is computed or approximated by a
Bayesian filter such as the Kalman filter presented in the previous section. If we now recall
that

argmax𝜓 𝑞(𝑦 ∣ 𝜓) = argmax𝜓 log 𝑞(𝑦 ∣ 𝜓)
and

log 𝑞(𝑦 ∣ 𝜓) = log
[ 𝑞(𝑦1 ∣ 𝜓) 𝑁𝑆∏

𝑘=2 𝑞(𝑦𝑘 ∣ 𝑦1∶𝑘−1, 𝜓)]= log 𝑞(𝑦1 ∣ 𝜓) + 𝑁𝑆∑
𝑘=2 log 𝑞(𝑦𝑘 ∣ 𝑦1∶𝑘−1, 𝜓),

we obtain the simple recursion

log 𝑞(𝑦1∶𝑘 ∣ 𝜓) = log 𝑞(𝑦1∶𝑘−1 ∣ 𝜓) + log 𝑞(𝑦𝑘 ∣ 𝑦1∶𝑘−1, 𝜓) (2.38)

for the log likelihood of the data up until index 𝑘.15
Since an analytical solution to eq. (2.33) is usually unavailable, numerical optimization

procedures are employed. To implement an efficient optimization scheme, a method to
evaluate themarginalization (2.37) is still required. For the general case of nonlinear systems,
approximate solutions can be found in the literature [50, Chap. 12]. The following section
demonstrates how the integral in eq. (2.37) can be computed analytically in the special case
of the linear Gaussian state-space model.

2.4.2 Maximum likelihood estimation in the linear Gaussian state-space model
As a specific instance of the general developments presented so far, assume that 𝑞(𝑦 ∣ 𝜃) is
the PDF corresponding to the linear Gaussian state-space model𝜃𝑘 = 𝐴𝑘(𝜓)𝜃𝑘−1 + 𝐵𝑘(𝜓)𝑢𝑘 + 𝜂𝑘𝑦𝑘 = 𝐶𝑘(𝜓)𝜃𝑘 + 𝜈𝑘, (2.39)

with 𝜈𝑘 ∼𝒩(0,Σ𝜈,𝑘(𝜓)) and 𝜂𝑘 ∼𝒩(0,Σ𝜂,𝑘(𝜓)), where some or all of thematrices𝐴𝑘,𝐵𝑘,𝐶𝑘,Σ𝜈,𝑘 andΣ𝜂,𝑘mayormaynot depend in someway on a parameter vector𝜓 to be estimated, and
may or may not be time-varying. Note that this general formulation incorporates estimating
the full matrices, estimating only specific entries of some matrices, and estimating matrices
of a particular structure parameterized by 𝜓. One particular structural assumption that is
often useful for estimating the two noise covariance matrices isΣ𝜂(𝜓) = 𝐿𝜂(𝜓)𝖳𝐿𝜂(𝜓),
which ensures that the resulting covariancematrix is symmetric and positive semidefinite (as
required), regardless of the entries of 𝐿𝜂. This enables unconstrained optimization methods
to be used for 𝜓.
15The negative log likelihood is sometimes also called the energy function [50, Chap. 12].
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The model (2.39) clearly satisfies the assumptions eq. (2.35) and eq. (2.36) stated above.
The relationship between state 𝜃𝑘 and measurement 𝑦𝑘 is given by𝑞(𝑦𝑘 ∣ 𝜃𝑘) =𝒩(𝑦𝑘 ∣ 𝐶𝑘𝜃𝑘,Σ𝜈,𝑘).
Moreover, from the basic Kalman filter equations (see algorithm 2), we have that𝑞(𝜃𝑘 ∣ 𝑦1∶𝑘−1, 𝜓) =𝒩(𝜃𝑘 ∣ �̂�−𝑘 , 𝑃−𝑘 )
and it follows that

𝑞(𝑦𝑘 ∣ 𝑦1∶𝑘−1, 𝜓) = ∫ℝ𝑁𝜃
𝑞(𝑦𝑘 ∣ 𝜃𝑘, 𝜓) 𝑞(𝜃𝑘 ∣ 𝑦1∶𝑘−1, 𝜓) d𝜃𝑘

= ∫ℝ𝑁𝜃
𝒩(𝑦𝑘 ∣ 𝐶𝑘𝜃𝑘,Σ𝜈,𝑘)𝒩(𝜃𝑘 ∣ �̂�−𝑘 , 𝑃−𝑘 ) d𝜃𝑘

=𝒩(𝑦𝑘 ∣ 𝐶𝑘�̂�−𝑘 , 𝐶𝑘𝑃−𝑘 𝐶𝖳𝑘 + Σ𝜈,𝑘).
This, in combination with the recursive update equation (2.38) for the log likelihood provides
uswith an efficientway to compute the (logarithm of the) likelihood 𝑞(𝑦 ∣ 𝜓) during a normal
run of a linear Kalman filter, without computing any additional quantities except for the log
likelihood itself: we simply obtain the recursive log likelihood update equation [50, Thm.
12.3]

log 𝑞(𝑦1∶𝑘 ∣ 𝜓) = log 𝑞(𝑦1∶𝑘−1 ∣ 𝜓) + 12 log|2𝜋Σ𝑒,𝑘| + 12𝑒𝖳𝑘Σ−1𝑒,𝑘𝑒𝑘 (2.40)

that can be added to the usual Kalman filter recursion, where𝑒𝑘 = 𝑦𝑘 − 𝐶𝑘�̂�−𝑘
and Σ𝑒,𝑘 = 𝐶𝑘𝑃−𝑘 𝐶𝖳𝑘 + Σ𝜈,𝑘
as in algorithm 2. Note that 𝑒𝑘 andΣ𝑒,𝑘 both depend on the choice of the parameters 𝜓, which
determine the various matrices used in the filtering procedure.
With this efficient procedure for evaluating the likelihood 𝑞(𝑦 ∣ 𝜓) at hand, one can now

use an arbitrary optimization algorithm for maximizing that quantity. Note that in most
instances, the likelihood is a non-convex function of the parameters and may have multiple
local minima, indicating that global optimization methods may be preferable. The gradientd log 𝑞(𝑦 ∣ 𝜓)∕d𝜓 can be calculated as well ([50, Eqs. (A17-A18)] provide expressions for the
case of constant matrices 𝐴, 𝐵, 𝐶, Σ𝜂, Σ𝜈), enabling the use of gradient-based optimization
methods which are often more efficient. Figure 2.3 shows an example in which ML
estimation was used to tune the noise covariances of a one-dimensional
Rauch-Tung-Striebel smoother (RTS).
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Figure 2.3 – An example illustrating maximum likelihood estimation in a linear state-
space model. The state follows the random-walk model 𝜃𝑘 = 𝜃𝑘−1 + 𝜂𝑘 with 𝜎𝜂 = 0.3, and
measurements are given by 𝑦𝑘 = 𝜃𝑘 + 𝜈𝑘 with 𝜎𝜈 = 0.8. Panel A shows the evolution of the
one-dimensional state 𝜃𝑘 (true and estimated by a RTS with optimized noise covariances),
and panel B the evolution of the measurements 𝑦𝑘. Panel C shows the negative log data
likelihood− log 𝑞(𝑦 ∣ 𝜎𝜂, 𝜎𝜈) as a function of the two noise standard deviations. Aside from
identical values with inverted signs, in this case, the negative log likelihood has a single,
global minimum at the true values 0.3 and 0.8 for 𝜎𝜂 and 𝜎𝜈.
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Chapter 3

Preliminaries B: physiology,
electromyography, and
respiratory support

All theory, dear friend, is gray,
And green is the lustrous tree of life.

(Mephistopheles, as quoted in Goethe’s Faust)
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3.1 Skeletal muscles

The physiology of human skeletal muscles and the respiratory system,
electromyography, and mechanical ventilation are all subjects that fill whole books.

Only a brief overview can be provided here; the aim is to provide the background
information necessary for the reader to follow along with the following chapters. The
discussion is, of course, far from comprehensive, and the interested reader will find pointers
to more thorough treatments provided in the corresponding sections. The chapter begins
with an introduction to muscular physiology and surface electromyography as a
measurement of muscular activity. The second part of the chapter contains an introduction
to the physiology of the respiratory system, followed by a brief discussion of mechanical
ventilation as a means to support said system. Finally, section 3.3 provides some
information on two studies, one in healthy volunteers and one in intensive care patients,
data from which will be utilized in later chapters of this thesis.

3.1 Skeletal muscles

This section first provides an introduction to the basic physiology of human skeletal
muscles—which include the respiratory muscles— in section 3.1.1, before section 3.1.2
then treats the foundations of surface electromyography.

3.1.1 Physiology

Figure 3.1 illustrates the main anatomical elements involved in movement generation. To
initiate muscular contraction, the motor cortex, a part of the central nervous system (CNS)
chiefly responsible for controlling body movement, activates a motor neuron (or, typically,
multiple motor neurons). Each motor neuron innervates a number of muscle fibers,
together with which it forms amotor unit (MU). Once it is activated by the CNS, the motor
neuron propagates an action potential along its axon, thereby activating all of the muscle
fibers it innervates at once. The depolarization caused by the motor neuron’s action
potential at the synaptic terminals on the muscle fibers triggers the release of two new
action potentials within each muscle fiber, propagating in opposite directions along the
muscle fiber. These two action potentials trigger the release of Calcium ions within the fiber
and, thus, the shortening of the sarcomeres, ultimately resulting in a shortening of the
muscle: a contraction. Figure 3.2 shows a detailed schematic representation of this process.
There is a brief electromechanical delay (EMD) between the action potential and the
resulting muscle fiber force twitch and, due to the different time constants of the action
potential propagation and force generation processes, the force twitch also lasts much
longer than the action potential. Figure 3.3 shows the excitation-contraction coupling, i.e.,
the relationship between electrical and mechanical twitches, of two different types of
muscle fibers. Muscles typically consist of a few ten to several hundred motor units (MUs),
each of which in turn consists of between less than ten and more than a thousand muscle
fibers [57] (in addition to its single motor neuron). The distribution of these MUs’
electromechanical properties, as well as the patterns of their activation over time, are
intricately organized and have been the subject of much research [57]. Arguably, the two
main organizing paradigms of motor units in a muscle are, firstly, the presence of a common
drive to all MUs and, secondly, the size principle.
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Action
Potential
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Delay
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Chapter 3 Preliminaries B: physiology, electromyography, and respiratory support

Figure 3.1 – Essential anatomical elements involved in human movement generation. A
motorunit is defined by the combination of amotorneuron and allmuscle fibers it innervates.
Reproduced with permission from Urry [130].

In a series of experimental studies, motor units in a muscle—and even in synergistic
muscle pairs [75]—have been observed to be driven by a shared neural common drive signal
that governs all of their activity [27, 28, 36, 106].1 Whether a MU activates at a given level
of common drive, however, depends on the MU’s individual recruitment threshold, which
differs widely across a muscle’s MU pool, along with many other properties. Thus, MUs
are recruited in a particular order, which appears to be preserved even during fatiguing
contractions [1, 124]. Recruitment and de-recruitment order are inversely related, i.e., those
(typically large) motor units that are recruited late— i.e., at high activation levels—are the
first to be de-recruited again. In addition, the so-called onion skin phenomenon refers to the
frequent observation that earlier recruitedmotor units usually exhibit higher firing rates than
later-recruited ones [28]. Note that it is a matter of current scientific debate how broadly this
principle really applies [56, 67, 103, 106]. Finally, muscle synergies represent an important
higher-level extension of the common drive concept. It has long been hypothesized that in
many instances, the CNS does not control muscles individually but rather drives the activity

1Deviations from this pattern have been observed, e.g., for large muscles in which different muscle regions are
controlled independently by the CNS [18, 86].
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3.1 Skeletal muscles

Figure 3.2 – A schematic representation of action potential generation and propagation,
force generation, and relaxation in a muscle fiber. Reproduced with permission from Urry
[130].

55
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Figure 3.3 – Excitation-contraction coupling of typical fast-twitch and slow-twitch muscle
fibers. The top row shows the electrical field fluctuation elicited by a single twitch of the
fiber, the bottom row shows the generated force twitch 𝑓(𝑡). The left column shows data
from a typical fast-twitch fiber (extensor digitorum longus, EDL), the right column data
from a typical slow-twitch fiber (soleus, SOL), both from an isolated rat muscle. EMD:
electromechanical delay (between EMG and force onset), CT: contraction time (onset to
force peak). Reproduced with permission from Moritani et al. [97].

of synergistic muscle groups together, using what has been called muscle synergies. While
some of the neurophysiological details are still a subject of debate, the existence of muscle
synergies has been confirmed in a large number of studies [16, 25, 44, 122, 126, 129]. From a
control-theoretic point of view, muscle synergies appear to serve as a useful abstraction layer,
as evidenced by the successful application of muscle synergy-based proportional prosthesis
control [12, 69]. Finally, note that there is, of course, a huge body of literature investigating
the general principles using which the CNS and, in particular, the motor cortex perform
muscle control [30, 34, 44, 66, 99, 100, 102, 128, 135].
Practically all MU and fiber properties such as EMG twitch amplitude, force twitch

amplitude, and recruitment threshold are correlated with MU size, where the latter is often
defined as the number 𝑁fib𝑖 of fibers innervated by MU 𝑖 [57–59]. In other words: large MUs
innervate a large number of muscle fibers, which elicit stronger and faster force and EMG
twitch responses, fatigue faster, and are only recruited at higher activation levels than
smaller MUs. This principle is termed the size principle. Empirical studies have shown that
the distribution of MU recruitment thresholds—and, thus, motor unit sizes— is highly
skewed, with many small MUs being recruited at low activation levels, and a few large MUs
being recruited only at high activation levels [57, 112, 132]. Both motor units and muscle
fibers have traditionally been grouped into distinct types (fast-twitch, slow-twitch,
fatigue-resistant) in the physiological literature [92], with the consequence that various
modeling studies have described MUs and fibers as belonging to either of a few distinct
classes, with properties drawn from corresponding distributions [4, 24, 113]. It seems,
however, that the distributions of MU and muscle fiber properties are actually continuous

Size Principle
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3.1 Skeletal muscles

Figure 3.4 – Statistical distributions of motor unit properties in the tibialis anterior in five
human subjects, before and after 12 weeks of dynamic training. No distinct clusters of MU
properties are visible— in other words, the distributions of these properties are continuous
and no clearly distinguishable MU types can be identified. Reproduced with permission
from Van Cutsem et al. [131].

without clear clusters (see fig. 3.4 for an example), thus not warranting a categorical model
but rather a model with continuously distributed properties [35, 47, 57, 111]. Figure 3.5
shows an exemplary measurement that is purported to illustrate all of the principles of
motor unit pool organization discussed above.

3.1.2 Surface electromyography

Surface electromyography (surface EMG, or sEMG) denotes the measurement of the
electrical fields generated by action potentials propagating along muscle fibers during
muscle activation. The measurement is performed by placing electrodes on the skin surface,
which are connected to an electrical amplifier for further processing. A surface
electromyogram provides a noninvasive measure of neural muscle activation and is widely
used in fields such as sports science, clinical diagnosis, prosthesis control, ergonomics, and
rehabilitation robotics [39, 92]. It has been used for monitoring the activity of respiratory
muscles for six decades by means of an esophageal catheter [80, 105], and for more than
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A

B

Figure 3.5 –Panel A: Forcemeasurements and identifiedMUAP trains during an isometric
constant-force contraction of the vastus lateralis (VL) muscle. Each color (and each row
in the left graph) represents one MU’s observed firing instants. It can be observed that
the MU rate coding conforms with the onion-skin principle, i.e., later-recruited MUs have
lower firing rates than MUs recruited earlier. (pps = pulses per second, MVC = maximum
voluntary contraction.) Reproduced with permission from De Luca and Contessa [26].
Panel B: Biceps brachii surface EMG measurements and analysis of a step-wise elbow
flexionmovement. The top panel shows the results of an algorithm to identify the discharge
times and action potential shapes of different MUs involved in this movement. It can be
observed that recruitment order and de-recruitment order are inversely related. Reproduced
with permission from De Luca et al. [29]. Note that the method used to identify the activity
of individual MUs in both studies has been the subject of scientific debate [41].
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Figure 3.6 – A model of the influence of the electrode detection system. Left: a
schematic illustration of the assumed geometricalmodel. At eachmoment, action potentials
propagating along muscle fibers give rise to a three-dimensional potential distribution
throughout the surrounding biological tissue. This, in turn, results in a two-dimensional
potential distribution on the skin surface (here: the (𝑥, 𝑦) plane). A single-differential EMG
signal is obtained from the difference between the potentials at two skin electrodes. Right:
a model of the spatial filtering introduced by the use of non-point electrodes and differential
measurements, using eqs. (3.2) to (3.4), for two circular electrodes of varying diameter ⌀ and
at varying inter-electrode distances 𝑑𝑥. The graphs show the values of the spatial transfer
function of the detection system for 𝜔 = 𝜔𝑥 = 𝜔𝑦 .

three decades using electrodes placed on the skin surface [33, 98]. The latter is of current
research interest [11, 72] and represents the main focus of this thesis. As such, a more
detailed overview of existing research on monitoring respiratory effort using surface
electrodes will be given in section 7.1.
Figure 3.6 (left) illustrates the basic setup used for surface EMG measurements, and

fig. 3.7 shows both simulated and measured (monopolar) sEMG signals elicited by a single
contraction of a single motor unit. Two distinct phases can be observed [91]:

1. The action potential propagates along the fiber, with a propagation velocity of roughly3m∕s to 5m∕s [87]. This is called the propagating component of the signal.
2. The action potential is extinguished once it reaches the fiber end. At this moment, a

similar peak can be observed all across the fiber at the same time. This is called the
end-of-fiber component of the signal.

Considering the frequency characteristics of the two components, the first is rather low-
frequent temporally (it is present for the whole duration of the action potential) and rather
high-frequent spatially (it is only observable at two particular positions along the fiber at
eachmoment), while the second is rather high-frequent temporally (it is only present for one
short moment) and rather low-frequent spatially (it is observed similarly across the whole
fiber). Since the biological tissues surrounding the muscle act as a spatial low-pass filter, the
propagating component can only be observed directly above the muscle, while the end-of-
fiber component is attenuated much less with increasing distance [31, 39]. For this reason,
crosstalk from muscles located further away from the electrodes consists almost exclusively
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Figure 3.7 –Left: a snapshot of action potential propagation along amuscle fiber. The initial
depolarization at the neuromuscular junction (NMJ) causes a continuous chemical reaction
that propagates the action potential along the fiber, causing ion currents to exit and enter
the fiber at different locations. These currents induce an electrical field in the surrounding
biological tissue, which acts as a volume conductor. It is this electrical field that is measured
by means of (surface) electromyography. Reproduced with permission from Moritani et
al. [97]. Right: simulated and measured monopolar surface potentials elicited by a single
motor unit action potential (MUAP), measured by a series of surface electrodes placed at
different positions along themuscle. Reproducedwith permission fromMerletti andMuceli
[91]; for details see there.
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3.1 Skeletal muscles

of end-of-fiber components [31, 39, 91]; an insight which has profound consequences for
proper signal processing and analysis [31].
Whereas fig. 3.7 (right) shows a single motor unit action potential (MUAP), an EMG

measurement usually represents the superposition of hundreds of MUAPs. (Recall from the
previous section that each muscle consists of dozens of motor units (MUs) and that each
recruited MU activates with a frequency of a few up to several dozen Hz.) Mathematically,
the superposition is often [62] modeled linearly as

EMG(𝑡) = 𝑁MU∑
𝑖=1

𝑁𝐴𝑃𝑖∑
𝑗=1MUAP𝑖(𝑡 − 𝑡𝑖𝑗),

where 𝑡𝑖𝑗 denotes the beginning of action potential 𝑗 ofMU 𝑖. Similarly, the generatedmuscle
force 𝐹(𝑡) is given by the superposition of all the individual force twitches 𝑓𝑖 (of which fig. 3.3
shows a single one) generated by each activeMU 𝑖 at each activation 𝑗; this is usually similarly
modeled as 𝐹(𝑡) = 𝑁MU∑

𝑖=1 𝐹𝑖(𝑡) = 𝑁MU∑
𝑖=1

𝑁𝐴𝑃𝑖∑
𝑗=1 𝑓𝑖(𝑡 − 𝑡𝑖𝑗).

Figure 3.5B shows an example of surface EMG measurements from different electrode
positions and the corresponding force signal of the biceps brachii muscle.
The relationship between a surface EMG signal and the corresponding generated muscle

force is complex and depends on a number of both stationary and non-stationary factors. As
illustrated in fig. 3.3 and discussed in the previous section, the amplitude and morphology
of the generated EMG and force twitches vary between individual fibers. The occurrence of
amplitude cancellation in the EMG signal— the effect that the action potential of one MU
negates the effect of another MU’s simultaneous action potential on the surface
potential— influences the EMG-force relationship of different muscles [43]. The efficiency
of the force-generating process, also called the neuromuscular efficiency, varies over time
since it depends on the current length of the muscle fibers [61, 137], the contraction
velocity [61, 137], and whether the muscle is fatigued due to previous contractions [87]. The
EMG-force relationship is further influenced by the electrical transmission path between the
muscle fibers and the recording electrode, which depends on the location and pinnation
angle of the muscle [93], the number and arrangement of the electrodes (as will be
discussed below in detail), the type and shape of electrodes, the electrode-skin impedance,
the conductivity of the intermediate media such as muscle, fat, and skin tissue. Finally, in
almost all cases, it is not the force generated by the muscle that is of interest, but rather
some other force that is related to the generated muscle force viabodily biomechanics. As
an example, in the case of biceps brachii surface EMG measurements, one is usually
interested in the lifting force generated at the wrist, which is related to the force generated
by the biceps via the elbow joint and depends on biomechanical factors such as the current
elbow angle and the length of the forearm.
From the previous paragraph, it is apparent that the EMG-force relationship is complex

and time-varying. Nevertheless, in many practical applications, the relationship between the
two signals can be approximated using a very simple heuristic: an envelope signal EMG(𝑡)
is calculated from the raw EMG signal, usually by applying some kind of moving average or

Neuromuscular
Efficiency

Envelope
Signal

61



Chapter 3 Preliminaries B: physiology, electromyography, and respiratory support

moving median filter to the rectified EMG signal, and then it is assumed that𝐹(𝑡) ∝ EMG(𝑡),
or, in other words, that there is a simple scaling factor between the two signals. This simple
heuristic has been successfully employed and confirmed in a number of studies for a number
of different muscles and recording settings [5, 7, 104], although there are muscles for which
the relationship is known to be nonlinear [5, 7, 136]. Note that when using this method, the
way the envelope signal is calculated implicitly defines an assumption about the dynamic
EMG-force transfer function. (Due to the rectifying step, this transfer function will usually
be nonlinear.) More complex models of the EMG-force relationship have also been proposed,
of course, such as nonlinear relationships between the envelope and force signals [79, 136]
and adaptive envelope calculation methods [21, 23]. On the other hand, many applications
of surface EMG, e.g., in prosthesis control, do not attempt to estimate the generated muscle
force at all. Instead, in these applications, it is usually the aim to identify recurring EMG
patterns, and then to control the prosthesis based on pattern recognition algorithms [48, 68].
If, however, a prosthesis is supposed to be controllable continuously across different force
levels, then pattern recognition approaches—which necessarily discretize both patient and
prosthesis action—are no longer sufficient, and continuous activation estimation methods
are required [46, 70, 138]. Note that if there is a continuous feedback control loop between
the user and the assistive device (which, among other things, requires the user to be awake
and responsive), the requirements on the precision of the activation estimation procedure
may not be high [71].
The choice of an electrode configuration is a supremely important step in the design process

of any sEMG application, with both the type of electrode to be used as well as the number
and geometrical arrangement of electrodes being deciding factors. For the latter, differential
measurements are a key element to understand. As opposed to monopolar measurements,
which use only a singlemeasurement electrode in addition to the (always required) reference
electrode, single differential measurements employ (at least) a pair of electrodes placed at
a distance to one another. The measurement signal is then given by the difference of the
signals measured by these two electrodes. The effect of such a configuration is that signal
components of low spatial variation are suppressed since these are similarly present in both
electrode signals—examples include cardiac and movement artifacts, baseline wander, and
crosstalk from other muscles. (This effect will be discussed in more technical detail below.)
The same effect is often described as differentialmeasurements having a lower pickup volume
or detection volume than monopolar measurements, meaning that the muscle volume from
which activity is picked up by the measurement configuration is smaller [91]. Finally, note
that many detection systems more complex than a single differential electrode pair have, of
course, been proposed and analyzed [40, 93, 101], with many applications nowadays using
high-density electrode grids [2, 63, 73, 76, 83, 93, 123, 133].
Mathematically, the effect of any detection system, including the influence of the number,

arrangement, size, shape, and type of the electrodes, can be modeled as a spatial transfer
function𝐻ds

(𝜔𝑥, 𝜔𝑦)whichdescribes how, at each instant in time, the 2-D electrical potential
distribution 𝜙(𝑥, 𝑦, 𝑡) on the subject’s skin is filtered spatially before a point measurementEMG(𝑡) = 𝜙(𝑥, 𝑦, 𝑡) ∗𝑥,𝑦 ℎds(𝑥, 𝑦) ||||𝑥=𝑥ea,𝑦=𝑦ea (3.1)

Electrode
Configuration
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3.1 Skeletal muscles

is taken by the measurement setup [37]. In eq. (3.1), the ∗𝑥,𝑦 operator denotes
two-dimensional convolution, 𝑥𝑒𝑐 and 𝑦𝑒𝑐 specify the position of the electrode arrangement
on the skin, and ℎds(𝑥, 𝑦) = ℱ−1𝑥,𝑦 {𝐻ele

(𝜔𝑥, 𝜔𝑦) ⋅𝐻ea
(𝜔𝑥, 𝜔𝑦)} <

models the two-dimensional impulse response of the detection system, resulting from the
combined effects of the electrodes (modeled by𝐻ele

(𝜔𝑥, 𝜔𝑦)) and the electrode arrangement
(modeled by𝐻ea

(𝜔𝑥, 𝜔𝑦)). Regarding the latter, consider a regular grid of𝑁𝑥×𝑁𝑦 electrodes,
aligned with the 𝑥 and 𝑦 axes,2 with interelectrode distances 𝑑𝑥 and 𝑑𝑧, respectively, where𝑁𝑥 = 𝑁𝑥𝑎 +𝑁𝑥𝑏 + 1 and𝑁𝑦 = 𝑁𝑦𝑎 +𝑁𝑦𝑏 + 1. The variables subscripted by 𝑎 and 𝑏 denote the
number of electrodes on the two sides of an arbitrarily chosen reference electrode. Assuming
identical electrodes and assigning individual weights𝑤𝑘𝓁 to each of them, the spatial transfer
function of the electrode arrangement is given by [37]

𝐻ea(𝜔𝑥, 𝜔𝑦) = 𝑁𝑥𝑏∑
𝑘=−𝑁𝑥𝑎

𝑁𝑦𝑏∑
𝓁=−𝑁𝑦𝑎 𝑤𝑘𝓁𝑒−𝑖𝜔𝑥𝑘𝑑𝑥𝑒−𝑖𝜔𝑦𝓁𝑑𝑦 . (3.2)

Regarding the modeling of individual electrodes, a large body of research is available [88,
90]. A simple, shape-agnostic electrode model is to assume that the sampled potential
measurement 𝜙ele(𝑡) corresponds to the average potential on the skin surface below the
electrode [37], i.e., 𝜙ele(𝑡) = 1|Ωele|∬Ωele

𝜙(𝑥, 𝑦, 𝑡) d𝑥, 𝑦, (3.3)

where Ωele denotes the region under the electrode, and |Ωele| its surface area. For specific
electrode shapes, the resulting spatial transfer function can be computed, e.g.,

ℎele(𝜔𝑥, 𝜔𝑦) = ⎧⎨⎩ 2 𝐽1(𝑟√𝜔2𝑥+𝜔2𝑦)𝑟√𝜔2𝑥+𝜔2𝑦 if (𝜔𝑥, 𝜔𝑦) ≠ (0, 0)1 if (𝜔𝑥, 𝜔𝑦) = (0, 0) (3.4)

for a circular electrode with radius 𝑟 [37], where 𝐽1 denotes the first-order Bessel function of
the first kind. Note, however, that the very basic electrode model eq. (3.4) neglects many
physical effects such as resistive and capacitive properties of electrodes and the fact that the
presence of the electrode and the connected amplifier also influences the potential
distribution in the biological tissue. Figure 3.6 (right) uses the models discussed above to
analyze the spatial filtering effect of several different detection system setups. Two main
observations can be made:

1. The differential measurement setup introduces so-called spectral dips at spatial
frequencies 𝜔 = 2𝜋𝑘∕𝑑𝑥, 𝑘 ∈ ℕ (in the case of a single differential pair of electrodes
at distance 𝑑𝑥). This phenomenon is well-known and studied in the literature [37, 78,
91, 141]. Note that spectral dips may also occur as a result of the spatial filtering
characteristics of the biological tissue itself [37]. The usual recommendation is to use

2Rotated detection systems can, of course, be described very similarly. Refer to Farina and Merletti [37] for
details.
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a small inter-electrode distance 𝑑𝑥 to prevent the occurrence of spectral dips within
the relevant frequency range [91].3

2. Differential setups with a small inter-electrode distance 𝑑𝑥 act as a strong spatial high-
pass filter, suppressing spatially low-frequent surface potentials.

The latter observation is the technical justification for the claim made above that differential
measurements have a lower detection volume and suppress spatially low-frequent artifacts
such as cardiac interference, movement artifacts, crosstalk from other muscles, and more.
Signal whitening is a common preprocessing step in surface EMG analysis and

demonstrably beneficial in many applications [20, 22, 42]. The underlying idea is that
removing temporal correlations from the signal yields a more instantaneous measure of
muscular activity. This is usually achieved by calculating a parametric estimate of the
power spectral density (PSD) of the signal, and then filtering the signal with the inverse of
that parametric estimate—yielding a signal with a flat (“white”) PSD.4 Figure 3.8 shows an
example of this operation in practice.
Impressive progress has been made over last decades in the recording, processing, and

analysis of surface EMG measurements. It has been noted, however, that many of these
technological advances have not been translated into clinical products [45]. Recently, it has
been hypothesized that this may be primarily due to cultural and organizational barriers [19,
82, 95]. Interestingly, one of the mentioned potential barriers is that the surface EMG is
mostly useful in clinical situations which are not life-threatening, thus possibly limiting
research funding and practitioner interest [82]. This is, however, certainly not the case for
the application discussed in the present thesis.
Much more detailed background information about surface EMG physiology, modeling,

and signal processing can be found in the excellent recent tutorial papers by Merletti and
Muceli [91] and Merletti and Cerone [89], and in the two seminal textbooks by Merletti and
Parker [92] and Merletti and Farina [94]. For more general background on
electrophysiology—not limited to surface electromyography— , refer to, e.g., the
introductory textbook by Plonsey and Barr [109]. Technical best practices and
recommendations regarding surface EMG applications can be found in two consensus
publications [14, 60]. Finally, the historically interested reader may enjoy the popular
science book by Ashcroft [8] about the history of electrophysiology.

3.2 The respiratory system
The respiratory system’s raison d’être is to provide the body’s cells with oxygen and,
simultaneously, remove excess carbon dioxide from the body. In healthy conditions, this
goal is achieved—often unnoticed—with extraordinary robustness by a complex,
interconnected system of physiological sensing and control mechanisms, which will be the
subject of the following section 3.2.1. For various pathological reasons, however, parts of
3Interestingly, the occurrence of spectral dips can also be exploited to estimate the action potential propagation
velocity [38, 77, 78, 93], which is of interest for, e.g., monitoring muscle fatigue [87].

4If the resulting amplitude spectrum is flat, where is all the information about the time course of the signal?
Why do the whitened signals, such as the one in fig. 3.8, not look like completely random noise? The answer
is: this information remains captured in the phase spectrum. Replacing the phase values of a whitened signal
by, e.g., some constant value yields a completely random, uninformative signal.
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Figure 3.8 – An illustrative example of surface EMG signal whitening. The top row shows
the original signal EMGmeas (preprocessed using only a 10Hz high-pass Butterworth filter),
both in time and frequency space. A sixth-order autoregressive model 𝐻burg(𝑧) = 1∕(1 +∑ 𝑎𝑖𝑧−𝑖) is fit to the power spectral density (PSD) of EMGmeas using Burg’s method [17, 74].
The original signal EMGmeas is then filtered with the inverse 𝐻burg(𝑧)−1 of that model, to
obtain the signal EMGwhite shown in the bottom row.

the respiratory system may cease to fulfill their essential role, making respiratory support
necessary. The main themes and technical challenges in providing respiratory support will
be discussed in section 3.2.2. Finally, section 3.2.3 presents a few well-known mathematical
models of respiratory mechanics.

3.2.1 Physiology and pathophysiology

Figure 3.9 shows a drawing of some of the main components of respiratory anatomy, and
fig. 3.10 a simplified view of the respiratory control system in a healthy human. To generate
a breath, the respiratory controller, primarily consisting of populations of neurons in the
medulla [118] but also various other regions of the brain [64], generates a neural drive
signal. This neural drive is propagated towards the motor neurons controlling the muscle
fibers that make up the respiratory muscles, causing these muscles to contract. The
diaphragm is the main respiratory (inspiratory) muscle, with supporting roles being played
by the external intercostal muscles and, particularly in case of high ventilatory demand or
diaphragm weakness, the scalenus and sternocleidomastoid neck muscles and the
pectoralis chest muscles [118]. As they are contracting, these inspiratory muscles pull the
pleural cavity downward and outward, and as a consequence, the pleural cavity and thus
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Figure 3.9 – Anatomy of the respiratory system, excluding the respiratory controller,
which is located in the brain. Reproduced with permission from Betts et al. [15]. Access
for free at https://openstax.org/books/anatomy-and-physiology@22.2/pages/
1-introduction.

the lungs expand. Fresh air streams into the airways to equalize the negative pressure that
ensues from this expansion, and oxygen is exchanged against carbon dioxide in the alveoli.
Exhalation is usually passive: after some time, the respiratory muscles relax, the pleural
cavity and the lungs begin to shrink again, and air is exhaled, equalizing the pressures
inside the lungs and outside the airways. Under high ventilatory demand or other special
circumstances, forced (or active) expiration may also occur, however. In this case, expiratory
muscles, including various abdominal muscles5 and the internal intercostal muscles serve
to exert additional pressure and, thereby, force air out of the lungs [118].
Respiration is one of the relatively few physiological processes that can be controlled both

consciously or unconsciously by a central pattern generator [65, 96, 115, 118]. There are
various neural feedback paths that influence the natural control of respiration, including
feedback from stretch receptors in the lungs to prevent excessive over-inflation of the lungs
that may lead to lung damage (the “Hering–Breuer reflex”), and (central and peripheral)
chemoreceptors that respond to 𝑂2 and 𝐶𝑂2 levels in different regions of the body [110, 118,
125]. Utilizing these feedback paths, the respiratory control center acts to maintain
homeostasis in the face of time-varying bodily energy expenditure, ambient temperature,
respiratory diseases, and other disturbances.
All components of the respiratory system may cause it to fail in reaching homeostasis.

5In particular, the rectus abdominis, external and internal oblique, and transversus abdominis muscles [119].
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Figure 3.10 – A (simplified) control systems view of the respiratory control system and
respiratory support.

The respiratory control center may fail to exert a respiratory drive due to medication or for
pathological reasons. The respiratory muscles may be weakened due to continued disuse
(e.g., during mechanical ventilation [13, 50]), excessive use (e.g., due to heavily obstructed
airways [13, 50]), or infections (such as COVID-19 [120]). Theymay also be paralyzed during
anesthesia. Finally, gas exchange in the lungs may be disturbed for various pathological
reasons, such as acute respiratory distress syndrome (ARDS), which may be caused, e.g., by
COVID-19 [9, 84]. For all of these reasons (and more that have not been named), patients
may require respiratory support by means of a mechanical ventilator.

3.2.2 Respiratory support

If, for any reason, a patient is unable to fulfill her respiratory needs by herself, she may be
supported by means of mechanical ventilation. The case in which the patient still has
residual respiratory activity, i.e., still exerts some respiratory effort, is called assisted
ventilation or respiratory support (as opposed tomandatory ventilation, in which the patient
is fully passive, due to, e.g., use of sedatives). Figure 3.10 shows a schematic overview of this
setting: there is now a second controller in addition to the patient’s own respiratory control
center— the mechanical ventilator. The mechanical ventilator typically receives as a

Assisted
Ventilation
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measurement the airflow �̇� passing through the patient’s airways, and it influences the
respiration by controlling the external pressure 𝑃aw acting on the patient’s airways. In the
simplest case, the ventilator may just provide a constant positive airway pressure (CPAP),
reducing the necessary patient effort to keep the airways and the lungs open. In the
intensive care setting, however, a more typical ventilation mode—and the one most
relevant to this thesis— is pressure support ventilation. This ventilation mode works by
detecting when a patient attempts to breathe (based on simple thresholds on airflow or
airway pressure) and then providing a fixed level of pressure support for a pre-set
inspiration time.6 There are many parameters that must be configured by a physician in
this ventilation mode, including the baseline level of pressure support, the level of pressure
support during inspiration, and the fixed inspiration time.
While it is often a life-saving intervention, mechanical ventilation is also accompanied by

many risks, including:

diaphragm atrophy due to disuse if the support level is set too high [13, 49],

diaphragm injury due to excessive strain if the support level is set too low [13, 50, 51],

lung injury due to excessively high driving pressures [13, 49, 139],

and various further complications due to, e.g., intubation, ventilator-associated infections,
necessary drug use, and psychological trauma [49, 52]. In order to minimize all of these
risks, the aim is generally to transition patients back to fully autonomous respiration as
quickly as possible; this process is called “weaning”. To address especially the first three
risks, the paradigm of lung and diaphragm-protective ventilation has been developed and
widely advocated for in recent years [13, 50, 51]. An essential requirement for following this
paradigm is, however, that the pressure 𝑃mus generated by the patient’s respiratory muscles
can be observed. This is currently only feasible with the clinically required reliability using
esophageal pressure measurements via an esophageal catheter [3, 85], see fig. 3.11. The
following section will briefly discuss how 𝑃mus can be estimated from measurements of 𝑃es.
However, it is not only the overall pressure 𝑃mus that is generated by all respiratory muscles
together but also the differential activity of the different respiratory muscles that conveys
important information about the state of a patient [32, 119]. To the author’s knowledge,
only two measurement modalities for monitoring the activity of the accessory respiratory
muscles (i.e., respiratory muscles other than the diaphragm) are currently known:
respiratory surface EMG measurements [55, 134] and mechanomyography [6, 81]. The
topic of monitoring a patient’s respiratory effort will be discussed in more detail in
chapter 7, where a new, noninvasive alternative method (based on respiratory surface EMG
measurements) for measuring 𝑃mus will be proposed.
One particular complication that may occur during assisted ventilation, and that has

received increased attention in the last two decades, is patient-ventilator asynchrony. For a
multitude of reasons, the patient and the ventilator may not “breathe in synchrony”, which
may mean, e.g., that the patient tries to draw a breath but is not supported by the ventilator
(because the patient’s effort is not detected), or that the patient receives an undesired breath
by the ventilator [127]. Patient-ventilator asynchrony is often a result of suboptimal
6This description is, of course, a simplification. In reality, there are various safety measures and limits built into
these modes, such as a maximum delay between subsequent breaths, and implementations differ between
manufacturers.
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Figure 3.11 – An illustration of esophageal pressure (𝑃es) measurement. An esophageal
balloon with a pressure transducer is inserted into the patient’s esophagus using a catheter.
After correct positioning, the pressure swings measured inside the esophageal balloon
closely approximate the swings in the pressure 𝑃pl in the pleural cavity. Drawing created
and kindly provided by Jan Graßhoff.

ventilator settings, but again— to detect patient-ventilator asynchrony, a means to observe
the patient’s respiratory efforts is required. As a last remark within this very selective
overview, researchers have also proposed various proportional support modes, which aim to
observe a patient’s own respiratory effort and provide assistance proportional to that
effort [108, 121, 140]. As one might hope, these modes have been found to improve
patient-ventilator interaction [107, 117].

3.2.3 Mathematical models of respiratory mechanics

Figure 3.12 shows two equivalent representations of the standard single-compartmentmodel
of respiratory mechanics [10]. Denote by 𝑃aw the pressure at the entrance of the airways (i.e.,
the mouth or the nose), by 𝑃𝐿 the pressure within the lungs, by 𝑃pl the pressure in the pleural
cavity, and by 𝑃atm the atmospheric pressure that acts on the body surface. During normal,
unassisted breathing, 𝑃aw ≡ 𝑃atm, but during (positive-pressure) mechanical ventilation,
we usually have 𝑃aw > 𝑃atm. (Without loss of generality, we will assume 𝑃atm ≡ 0 in the
following.) Furthermore, let 𝑉 denote the difference between the current lung volume 𝑉𝐿
and the lungs’ functional residual capacity (FRC) 𝑉0, which is defined as the equilibrium
volume level at which �̇� ≡ 0 for 𝑃mus ≡ 0. Finally, let �̇�, its derivative, denote the airflow
entering the lungs through the airways. The standard single-compartment model can then
be derived from just two assumptions.
Firstly, a pressure drop ∆𝑃𝑅(�̇�) is assumed between 𝑃aw and 𝑃𝐿, due to the resistive

properties of the airways and the ventilation tube. Usually, this pressure drop is assumed to

Proportional
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Figure 3.12 – Two equivalent representations of the standard single-compartment model of
respiratory mechanics. Left: Air must first pass through a narrow, resistive airway opening
to reach the lungs, which are represented by an elastic container with volume 𝑉𝐿. This
contained is enclosed in a second elastic container, representing the chest wall. The space
between the two containers is the pleural cavity. The respiratorymuscles exert their forces on
said pleural cavity. Right:An equivalent electrical circuit. The resistor 𝑅models the airway
resistance; the two capacitors model the two elastic containers. (𝐶 is called the compliance
and is given by 𝐶 = 1∕𝐸.) Voltages represent pressures; currents represent airflows; charges
represent volumes. This model is generally less ambiguous than the container model drawn
in the left panel.

be either linear or quadratic in the airflow, i.e.,𝑃aw − 𝑃𝐿 = ∆𝑃𝑅(�̇�) = 𝑅�̇� (3.5)

or (known as Rohrer’s equation [114])𝑃aw − 𝑃𝐿 = ∆𝑃𝑅(�̇�) = 𝑅1�̇� + 𝑅2�̇�|�̇�|. (3.6)

Secondly, a pressure drop is assumed between the insides and outsides of the two elastic
containers “lungs” and “pleural sac”, due to their elastic recoil. Usually, this pressure drop
is assumed to be either linear or quadratic in the current lung volume, i.e.,𝑃𝐿 − 𝑃pl = ∆𝑃𝐸𝐿(𝑉) = 𝐸𝐿𝑉, (3.7)

with 𝐸𝐿 denoting the lung elastance, or𝑃𝐿 − 𝑃pl = ∆𝑃𝐸𝐿(𝑉) = 𝐸𝐿1𝑉 + 𝐸𝐿2𝑉2. (3.8)

Equivalently, ∆𝑃𝐸𝐶𝑊(𝑉) = 𝐸𝐶𝑊𝑉, (3.9)

Lung Elastance
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with 𝐸𝐶𝑊 denoting the chest wall elastance, or∆𝑃𝐸𝐶𝑊(𝑉) = 𝐸𝐶𝑊1𝑉 + 𝐸𝐶𝑊2𝑉2. (3.10)

Finally, the respiratory muscles are assumed to generate a negative pressure −𝑃mus that acts
on the outside of the pleural cavity, and thus we have7𝑃pl + 𝑃mus − 𝑃atm = ∆𝑃𝐸𝐶𝑊(𝑉). (3.11)

Combining eqs. (3.5), (3.7), (3.9) and (3.11) (and assuming 𝑃atm ≡ 0), we obtain the
respiratory equation of motion [10]𝑃aw = 𝑅�̇� + (𝐸𝐿 + 𝐸𝐶𝑊)𝑉 − 𝑃mus + 𝑃0. (3.12)

(In eq. (7.1), the constant offset 𝑃0 is not strictly necessary but is usually included to identify
the offsets, i.e., equilibrium volumes, of the two elastances [10].) From the same equations,
we also obtain 𝑃mus = 𝐸𝐶𝑊𝑉 − 𝑃pl, (3.13)

which provides a way to monitor the important quantity 𝑃mus, given measurements of 𝑃pl
and an estimate of 𝐸𝐶𝑊 . The pleural pressure 𝑃pl is difficult (since quite invasive) to measure
in practice; fortunately, however, the esophageal pressure 𝑃es (following careful and precise
placement of the esophageal balloon) has been found to represent an accurate surrogate
measurement [10]. Measuring esophageal pressure and accounting for the effect of the
chest wall elastance is the current gold standard method for measuring 𝑃mus in mechanically
ventilated patients [3, 10, 85].8

3.3 Study data
A faithful validation of theoretical developments for practical applications always requires
representative empirical data. To this end, the developments made in this thesis will be
validated using data from two empirical studies. Since the electrode setup used in both
studies is similar and differs from standard EMG recording setups, this will be discussed in
section 3.3.1. Section 3.3.2 and section 3.3.3 then describe the two studies in further detail.

3.3.1 Measurement setup
In section 3.1.2, the effect of the electrode configuration was assessed at length for general
applications, and it was demonstrated that differential measurements with a small
inter-electrode distance reduce the so-called pickup volume by suppressing spatially
low-frequent signal components. Usually, this is a desirable effect. In the particular case of
the diaphragm, this is not the case, however: since the diaphragm extends over a large area
7Throughout this thesis, we define 𝑃mus as the negative of the actual pressure generated by the respiratory
muscles, i.e., it is positive when a net negative pressure is generated (during inspiration).

8The author has co-authored two publications concerning this topic. Graßhoff, Petersen et al. [54] describe a
new, automated method for the removal of cardiogenic artifacts from esophageal pressure measurements.
Graßhoff, Petersen, et al. [53] describe an automated method for identifying the chest wall elastance 𝐸𝐶𝑊
and estimating 𝑃mus from 𝑃es. Both publications will not be further discussed in this thesis.
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Figure 3.13 – Left: Depiction of the placement of the recording electrodes in study A,
described in section 3.3.2. The difference between the signals picked up by electrodes 1
and 2 corresponds to measurement channel 1; the difference difference between the signals
picked up by electrodes 4 and 5 corresponds to measurement channel 2. Electrode 3, placed
on the sternum, is a reference electrode. Reproduced and modified with permission from
Sauer [116]. Right: a picture of the study equipment (EMG electrodes + cables not shown).

and extends deeply into the torso (see fig. 3.9), an electrode setup with a large pickup
volume is more likely to capture most of the diaphragm’s activity. Moreover, differential
measurements with a short inter-electrode distance are more prone to being dominated by
the activity of superficial abdominal muscles, which lie between the electrodes and the
diaphragm. Empirical (unpublished) tests have confirmed these predictions, with
monopolar measurements, or differential measurements with a very large inter-electrode
distance, yielding an improved signal-to-noise ratio in comparison with differential
measurements with a small inter-electrode distance. Moreover, to minimize clinical effort
and additional technical processing equipment in the intensive care setting, only a small
number of electrodes should be used. For these reasons, the electrode configurations shown
in fig. 3.13 and fig. 3.14 were used, which employ long distance differential measurements
for each muscle group under consideration to yield a single channel per muscle group
(diaphragm, intercostal muscles, rectus abdominis).

3.3.2 Study A: cardiac interference in healthy subjects
For the specific purpose of validating algorithms for removing cardiac interference from trunk
EMG recordings—a task which will be the exclusive subject of chapter 5—a representative
study was designed and conducted as part of the Bachelor’s thesis of Sauer [116] (under the
supervision of the author). A study protocol was written, and ethical approval for the study
was obtained from the local ethics committee.
Ten healthy subjects were recruited for the study. Particular care was taken to ensure a

diverse and representative study group with respect to age, sex, physical condition, and
body mass index (BMI). Participants were asked to lie on a couch and rest quietly for15min, while breathing through a pneumatic resistor (PowerBreathe Medic,
POWERbreathe International Ltd.) to ensure sufficiently strong respiratory muscle activity.
Two channels of surface electromyographic measurements were obtained using a
Shimmer3 EMG amplifier (Realtime Technologies Ltd.) at a sampling rate of 1024Hz, and
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Figure 3.14 – Depiction of the placement of the recording electrodes in study B, described
in section 3.3.3. The difference between the signals picked up by electrodes 1 and 2
(second intercostal space, bilaterally on the parasternal line, targeting the parasternal
external intercostalmuscles) corresponds to theEMG𝑖measurement channel, the difference
difference between the signals picked up by electrodes 3 and 4 (lower costal margin,
bilaterally on the midclavicular line, targeting the costal diaphragm) to the EMG𝑑
measurement channel, and the difference between electrodes 5 and 6 (epigastric and
hypogastric region, 2cm left or right of median line, targeting the rectus abdominis muscle)
to the EMG𝑟 measurement channel.

airway opening pressure was measured using a differential pressure transducer (MP3V5050,
Freescale Semiconductors, Inc.) connected to the mouthpiece. Figure 3.13 shows the
electrode configuration and the equipment used in the study. Of the total of 20 EMG
recordings (ten participants with two channels each), 14 were used for further analyses.
Table 3.1 lists the study subjects and some of their attributes, as well as reasons for their
exclusion from further analyses, if applicable.

3.3.3 Study B: respiratory effort in mechanically ventilated patients
For the purposes of investigating the estimation of respiratory effort from pneumatic as well
as surface electromyographic measurements (the subject of chapter 7), a second dataset is
employed. This dataset represents a subset of the data recorded and reported on by Bellani
et al. [11], and is used here with the kind permission of Dr. Bellani and his colleagues.9 The
study was conducted in an intensive care unit (ICU) at San Gerardo Hospital, Monza, Italy.
Adult intubated patients under no or mild sedation were included in the study, and subjects
received pressure support ventilation (PSV) using a Servo-i mechanical ventilator (Getinge,
Göteborg, Sweden). Esophageal pressure 𝑃es was measured using a nasogastric catheter
(EDI catheter Maquet, Solna, Sweden) with an esophageal balloon (Adult Esophageal
Balloon Catheter 47-9005, Cooper Surgical, Trumbull, Connecticut). Cardiac artifacts in the𝑃es signal were removed using a template subtraction technique proposed by Graßhoff,
Petersen, et al. [54], and an estimate 𝑃mus-Pes of 𝑃mus was calculated from the 𝑃es and 𝑉
9Dr. Bellani and his colleagues recorded more subjects than are reported on in Bellani et al. [11]. The subset
analyzed here partially differs from the subset analyzed in Bellani et al. [11], whence there are differences
between the patient group characteristics.
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signals using the algorithm described by Graßhoff, Petersen, et al. [53]. (Briefly, 𝐸𝐶𝑊 was
estimated on snippets of 30 s length, and 𝑃mus was estimated from eq. (3.13).) Surface EMG
signals were collected using three differential pairs of skin electrodes (Kendall 530 Foam
Electrodes, Covidien, Dublin, Ireland), which were positioned as depicted in fig. 3.14. The
EMG signals were amplified using the Dipha 16 amplifier (Inbiolab, Groningen,
Netherlands) and processed using a dedicated signal processing algorithm, which removed
cardiac artifacts using a gating procedure, high-pass filtered the raw signals to remove
baseline noise, and calculated a moving envelope signal based on a weighted moving
average of the absolute EMG signal within a 250ms window. The envelope calculation was
implemented in a causal fashion, i.e., only past raw EMG values were taken into account,
thus introducing a delay in the EMG envelope signals. The EMG (in µV), ventilator (airway
pressure 𝑃aw in mbar, airflow �̇� in L∕s, volume 𝑉 in L), and 𝑃es (in mbar) signals were
gathered, synchronized, and recorded using a dedicated acquisition system (Drägerwerk
AG & Co. KGaA, Lübeck, Germany). For more details on the study characteristics, refer to
Bellani et al. [11].
For our analyses comparing EMG-based measures of respiratory effort with 𝑃es-based

measures (chapter 7), we excluded recordings in which

• either the recording of 𝑃es or of the surface EMG signals failed or was subject to strong
artifacts,

• the algorithm [53] computing 𝑃mus-Pes from 𝑃es failed (this concerned one dataset
which used the NAVA ventilation mode, for which the estimation procedure was not
conceived), or

• the patient did not show significant spontaneous breathing activity.

Moreover, only one recording per patient is used, although multiple recordings have been
made for most patients. In total, nine subjects were selected for further analyses; their
characteristics are listed in table 3.2. The recordings of patients B/08 and B/09 were split on
changes in ventilator settings, yielding a total of eleven recordings that are analyzed in
chapter 7. As a last remark, the aim of the analyses in chapter 7 was a technical feasibility
study and not a formal observational study; thus, subject selection was not performed
comprehensively. In other words: it is likely that the data recorded by Dr. Bellani and
colleagues contain more suitable subjects than have been analyzed here. (The performance
of the algorithm presented in chapter 7 did not influence the selection of the recordings
under consideration in any way.)

74



3.3 Study data

no. age sex weight
(kg) size

(cm) BMI
(kg∕m2) other

features
body fat (%) skin

wrinkle (mm) Reason for
exclusion

A/01 21 m 67 182 20 athletic, very
lean

7.1
(6, 8, 6, 6, 8, 14, 9)

—

A/02 65 f 71 162 27 just stopped
smoking

18.9
(6, 12, 10, 18, 21, 14, 18)

Measurement
artifacts in both

channels

A/03 22 m 124 187 35 obese 22.4
(18, 36, 15, 26, 28, 26, 20)

Measurement
artifacts in
channel 2

A/04 27 m 82 186 24 muscular,
lean

5.4
(4, 8, 6, 7, 5, 4, 8)

Measurement
artifacts in both

channels

A/05 21 f 78 169 27 six months
pregnant

11.1
(10, 2, 8, 12, 10, 21, 20)

—

A/06 21 m 67 197 17 underweight 3.1
(2, 5, 2, 8, 3, 6, 6)

—

A/07 22 f 56 174 18 lean 3.8
(2, 11, 3, 6, 4, 4, 6)

—

A/08 25 m 74 180 23 lean, athletic
to muscular

4.2
(3, 6, 6, 6, 3, 4,8)

—

A/09 50 f 75 168 27 slightly
overweight

21.3
(14, 26, 4, 24, 22, 18)

Measurement
artifacts in
channel 1

A/10 23 f 84 179 26 average 16.5
(6, 18, 11, 17, 15, 32, 21)

—

Table 3.1 – Data on the participants of study A, described in section 3.3.2. The body fat
column additionally specifies the measured skin wrinkle size of chest, belly, leg, hip, armpit,
triceps, and back. Reproduced and modified with permission from Sauer [116].
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no. age sex BMI
(kg∕m2) sedation recording

length(s) occlusions diagnosis remarks

B/1 45 m 16 weak 11min 10 s 10 ARF —

B/2 60 f 25 weak 11min 4 s 8 Septic
shock Periodic breathing

B/3 55 m 29 weak 11min 11 s 0 Pneumonia Periodic breathing

B/4 76 m 26 none 11min 30 s 5 COPD Periodic breathing

B/5 78 m 25 none 8min 44 s 7 ARF,
pneumonia Active expiration

B/6 59 m 20 N/A 31min 32 s 4 ARF —
B/7 78 m 25 N/A 31min 2 s 2 ARF —

B/8 N/A N/A N/A N/A 10min 20 s11min 0 s 10/10 N/A

Diagnosis &
demographics
unknown; split
into two parts

based on changes
in PEEP and PS

B/9 54 m 24 weak 5min 38 s6min 59 s 0/0 COPD,
pneumonia

Split into two
parts based on a
change in PS

Table 3.2 – Data on the selected subjects of study B, described in section 3.3.3. Body-
mass index (BMI), acute respiratory failure (ARF), chronic obstructive pulmonary disease
(COPD), information unavailable (N/A), positive end-expiratory pressure (PEEP), pressure
support level (PS). Data (except for occlusion counts and remarks) kindly provided by
Bellani et al. [11].
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Chapter 4

Modeling and
blind source separation of
respiratory surface EMG

Figure 4.1 – An illustration of electrophysiological crosstalk. Two muscles are active
at the same time, thus both generating time-varying electrical fields in the surrounding
biological tissue. Electrodes—placed, for example, on the skin surface—can only pick up
the superposition of the two muscles’ electrical activity. Separating the effects of multiple
sources when only mixture signals are measurable and the properties of the mixing system
are unknown is called blind source separation (BSS). In this chapter, BSS is used to recover
the activity of multiple respiratory muscles from surface EMG measurements at multiple
locations, and a comprehensive surface EMG simulation model is developed specifically for
the validation of the BSS procedure.
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Muscles and neurons generate electrical field fluctuations when they are
activated, and these field fluctuations can be picked up by properly placed recording

electrodes. All electrophysiological measurements rely on this basic principle, including
electromyography (EMG), electrocardiography (ECG), and electroencephalography (EEG),
among others. These measurement modalities differ mainly in the type and placement of
the electrodes and the subsequent signal processing. As a corollary, which physiological
processes an electrophysiological measurement observes—e.g., cardiac or brain activity,
respiration, or biceps activation— is determined solely by electrode type and placement as
well as subsequent signal processing. If multiple muscles or neurons are close enough to
the recording electrode, the recorded signal will inevitably represent a superposition of the
activity of these different physiological units. Separating these different contributions from
one another in the recorded signal, and thus obtaining a cleaned signal exhibiting only the
physiological activity of interest, is a ubiquitous task in biomedical signal processing. This is
the domain of source separation algorithms.
A vast number of algorithms for recovering unknown source signals from measurements

of mixtures of these sources have been proposed, based on different assumptions about the
source signals, the mixing system, and the available measurements. In this chapter, we will
concern ourselveswith the development and validation of a novel approach for separating the
various sources that are present in respiratory surface EMG measurements: inspiratory and
expiratory activity frommultiple muscles, crosstalk from other muscles, cardiac activity, and
further physiological noise sources.1 For this purpose, we will employ a particularly general
multi-input multi-output (MIMO) blind source separation (BSS) framework, namely the
TRIple-N Independent component analysis for CONvolutive mixtures (TRINICON) [9, 10]
framework. Besides the design of an effective algorithm, there is a second, crucial challenge
when proposing a solution to any physiological source separation: validation. How can
the correctness of the estimated sources computed by the algorithm be evaluated? In most
physiological settings, reference measurements of the desired sources are inaccessible; this
is also the case for the present electrophysiological separation task— it is impossible to gain
reference measurements of different physiological processesmeasured at the same location
and time and with the same equipment as the actual measurements without also measuring
the disturbances resulting from the other source signals. One way to validate a proposed
BSS algorithm despite this challenge is to use precise physiological simulation models to
generate synthetic mixture signals for which the original, correct sources are known. This is
the pathwe follow here, and for this purpose, a new and comprehensivemathematicalmodel
of surface EMG and force signal generation is proposed and implemented. The proposed,
TRINICON-based BSS procedure is then validated both on real measurements (qualitatively)
and simulated data (quantitatively).
Section 4.1 defines the precise problem under consideration in this chapter and briefly

summarizes the state of the art in, firstly, blind source separation for surface EMG signals and,
secondly, surface EMG modeling and simulation. Next, section 4.2 proceeds to describe a
newly proposed, comprehensive respiratory surface EMG simulationmodel. In the following
section 4.3, the actual source separation algorithm is described, which represents a specific
instance of the TRINICON framework proposed by Buchner et al. [9]. The algorithm is then
validated using simulated measurements in section 4.5. Finally, section 4.6 concludes the
1The derivation of the algorithm itself has not been performed by the author and is, instead, the work of
H. Buchner. It is reproduced here for completeness and not the focus of this chapter.
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Chapter 4 Modeling and blind source separation of respiratory surface EMG

chapter with a brief discussion and some proposals for further research.2

4.1 Problem definition & state of the art
Section 4.1.1 briefly defines the type of separation problem considered in this chapter. In
section 4.1.2, a brief overview of previous algorithms for its solution is presented. Since
electrophysiological simulation plays an important role in the validation of the BSS algorithm
presented in this chapter, and a complex physiological model is developed for precisely that
purpose, section 4.1.3 provides an overview of the start of the art in EMG signal modeling.

4.1.1 Problem definition

Given 𝑃 = 4 measurements EMG1𝑘,… ,EMG𝑃𝑘 of respiratory surface EMG measurements,
which represent mixtures of multiple physiological phenomena, we aim to isolate 𝑄 source
signals 𝑠1𝑘,… , 𝑠𝑄𝑘 representing these individual physiological processes from the mixture
measurements. This is a classical (discrete-time) multi-input multi-output (MIMO)
separation problem since both multiple sources as well as multiple measurement signals are
involved. We will aim for source separation on themuscle group level, i.e., the aim is neither
to identify the contributions of individual motor units nor those of individual muscles:
instead, we want to separate the contributions of inspiratory muscles, expiratory muscles,
cardiac activity, and further noise sources. Thus, we assume that 𝑄 = 𝑃 = 4. Finally, we do
not want to make any specific assumptions about the time course of the individual sources’
activation signals,3 i.e., we want to perform blind source separation (BSS).

4.1.2 Source separation algorithms for surface EMGmeasurements

The literature onMIMOBSS is vast. The proposed approaches can broadly be classified along
three dimensions:

The mixing model. Any separation algorithm must make an assumption about the way
in which the source signals are mixed in the available measurements. The two most
popular mixing models are (linear) instantaneous mixing and (linear) convolutive
mixing. Instantaneous mixing assumes that the measurement signals 𝑥1𝑘 …𝑥𝑃𝑘
represent instantaneous linear combinations of the source signals, i.e.,

𝑥𝑝𝑘 = 𝑄∑
𝑞=1ℎ𝑞𝑝𝑠𝑞𝑘 ∀ 𝑝 = 1,… , 𝑃,

2Parts of this chapter have been the subject of a number of previous journal and conference publications (co-
)authored by the author [12, 73, 75, 77, 78]. A preliminary version of the mathematical model of surface
electromyography was described by Petersen [75], and a much more complete version, on which the present
chapter is built, by Petersen and Rostalski [78]. The model was used by Olbrich et al. [73] in a system
identification context, an application which is not further discussed here. The BSS algorithm was first
described by Buchner et al. [12] and comprehensively evaluated using an earlier version of the sEMG model
by Petersen et al. [77].

3We will assume the very general properties of non-Gaussianity, non-whiteness, and non-stationarity; see
section 4.3 for details.
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where ℎ𝑞𝑝 ∈ ℝ quantifies the influence of source signal 𝑠𝑞 on mixture signal 𝑥𝑝.
Convolutivemixing, on the other hand, assumes that the source signals are filtered by
different linear FIR filters on their way to the different sensors, i.e.

𝑥𝑝𝑘 = 𝑄∑
𝑞=1ℎ𝖳𝑞𝑝𝑠𝑞𝑘 ∀ 𝑝 = 1,… , 𝑃 (4.1)

with the FIR coefficients ℎ𝑞𝑝 ∈ ℝ𝐿 and the delayed source signal vector𝑠𝑞𝑘 = (𝑠𝑞𝑘 𝑠𝑞𝑘−1 ⋯ 𝑠𝑞𝑘−𝐿+1)𝖳 .
The relationship between 𝑃 and 𝑄. If 𝑃 > 𝑄 (there are more measurements than

sources), the separation problem is said to be overdetermined; if 𝑃 < 𝑄 (there are more
sources than measurements), the separation problem is said to be underdetermined.
This has consequences for the type of prior knowledge about the source signals that is
required to achieve successful separation.

Assumptions made about the source signals. Some assumptions about the
characteristics of the source signals must be made to enable recovering the source
signals from the mixtures. Typical broad assumptions include statistical
independence of the individual sources, sparsity (in the time domain, frequency
domain, or a time-frequency representation), as well as non-Gaussianity,
non-stationarity and non-whiteness of the source signals. More specific assumptions
power various special algorithms.

Possibly the simplest algorithm for performing BSS is a simple principal component
analysis (PCA) applied to the signal matrix (or a time-frequency or frequency
representation of the signals) [50]. Another closely related [18, 50] and widely popular
algorithm is independent component analysis (ICA) [16–18, 50, 51], which assumes
instantaneous mixing as well as non-Gaussianity and statistical independence of the source
signals. In ICA, the mixing coefficients and the source signals are identified by minimizing
a suitably chosen cost function such as the mutual information between the source
signals [50]. Non-negative matrix factorization (NMF) [55] represents the basis for another
large group of algorithms, based on the assumption of source signal positivity [14]. (As
opposed to ICA, NMF does not require statistical independence between the source signals.)
In a unifying effort, Buchner et al. [9] have developed the general TRIple-N Independent
component analysis for CONvolutive mixtures (TRINICON) framework for broadband
adaptive MIMO signal processing algorithms, which encompasses many of the previously
known algorithms as special cases. In this framework, the non-Gaussianity,
non-stationarity and non-whiteness of the source signals can be exploited simultaneously to
efficiently minimize the mutual information between the source signals. Both
instantaneous as well as convolutive mixture models can be treated.
Shifting from general BSS to the specific application of multi-channel EMG source

separation, the literature is expansive as well. In this setting, separation can be performed at
a number of different levels [45], see fig. 4.2 for an overview. Firstly, on the highest
abstraction level, one can aim to identify the activity of differentmuscle groups, striving to
identify one source activity signal—often called amuscle synergy—per muscle group. This
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Chapter 4 Modeling and blind source separation of respiratory surface EMG

will often result in an over-determined separation problem, as there are usually more
measurement channels than relevant muscle groups. Muscle-group activity estimation (i.e.,
muscle synergy identification) is often performed using envelope signals and an
instantaneous mixing model, using, e.g., NMF [1, 7, 37, 49, 88]. At a more granular level,
one may attempt to identify the contributions of individual muscles. For this identification
problem, one often roughly has 𝑃 ≈ 𝑄, except for high-density surface EMG applications,
where 𝑃 > 𝑄. Since the solution of this separation task mainly requires the precise
identification and elimination of crosstalk, many proposed solutions employ a convolutive
mixing model in order to capture the effect of the different electrical transmissions paths
between the muscles and the different electrodes [46, 48, 68]. Finally, at the lowest level,
separation can also be performed at the level of individual motor units (MUs). This is
usually only feasible with HD-sEMG, but even then, due to the large number of MUs, the
separation task is often underdetermined. At this level, two types of algorithms have been
proposed. The convolution kernel compensation (CKC) approach proposed by Holobar and
Zazula [46] is a variation on classical convolutive blind source separation techniques,
whereas the separation algorithm proposed by De Luca et al. [24] and Nawab et al. [67]
relies on template matching for the individual MUAPs. Intense scientific debate has ensued
about the validity—and the means for correct validation—of the two approaches [23],
with the method proposed by De Luca et al. [24] and Nawab et al. [67] being commercially
available (NeuroMap, Delsys Incorporated, Natick, MA, USA). In particular, there is an
open debate about the correct procedure for proper experimental validation of source
separation approaches [22, 23, 31, 33], which is one of the reasons why we have selected a
simulation-based validation approach here— the other reason being that the discussed
validation methods are designed for the validation of MU-level separation algorithms, not
for muscle synergy identification.

4.1.3 Surface EMG simulation models
Over the decades, many mathematical models have been proposed for all aspects of the
neuromuscular system that contribute to EMG signal generation, ranging from biophysical
process models at the sarcomere level [64] over Hodgkin-Huxley type models of action
potential propagation [43], models of motor unit rate coding and recruitment [30] and the
distributions of electromechanical properties in motor unit pools [38] to purely statistical
descriptions of the resulting signals [60]. Since the purpose of the comprehensive model
developed in this chapter is the generation of realistic surface EMG signals for the
validation of BSS algorithms, certain aspects of physiology can be described in a simplified
way, whereas others need to be represented faithfully to obtain realistic simulated sEMG
signals. In particular, a precise simulation of processes at the cellular level is not required
because a simplification of these has rather marginal consequences for mixture signals
observed at the skin surface. Three aspects of physiology have a particularly strong effect on
the resulting signals:

1. The geometry and conducting properties of the muscle and the surrounding tissue
have a huge influence on the recorded signals. This includes theway individualmuscle
fibers and motor units are distributed throughout the muscle [8, 34, 72].

2. The organization of the motor unit pool similarly has a strong effect on the resulting
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4.1 Problem definition & state of the art

Figure 4.2 – An overview of the different physiological levels of muscle activation, as well
as the various transmission and mixing processes that connect activation signals at the
different levels. Source identification techniques can be used to recover activation signals
at different levels, including themuscle synergy layer (recovering activation primitives), the
individual muscle layer (recoveringmuscle excitation signals), and the individual motor unit
layer (recoveringMU spike trains). Reproduced with permission from Holobar and Farina
[45].
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Chapter 4 Modeling and blind source separation of respiratory surface EMG

EMG-force characteristics [38]. This includes aspects such as the progressive
recruitment of the different motor units, the rate coding of already-recruited MUs,
and the stochasticity of the firing process [25].

3. The characteristics of the muscle as a whole, including the EMG-force relationship,
are an emerging property that results from the relationship between many individual
variables at the motor unit level, such as action potential amplitude, conduction
velocity, twitch force, recruitment threshold, and more [38]. The relationship
between many of these properties is governed by what is known in the literature as
the size principle [40–42].

For many years, the model proposed by Fuglevand et al. [38] was the state of the art in
simulation models of the complete muscle, and it has been reused and extended in a large
number of further modeling studies [13, 29, 82, 84, 85]. There have, however, been a number
of important advances in different aspects of EMGmodeling, warranting an update of this
classic model. Farina and Merletti [32], Farina et al. [35], and Farina and Rainoldi [36] have
proposed analytical models of intracellular action potential propagation and 3-D volume
conduction, taking the different conductivities of the (anisotropic) muscle, fat, and skin
layers into account, aswell as the effect of the electrode recording system. Volume conduction
models for more realistic geometries have been proposed using the finite element method
(FEM) [8, 57, 58, 63, 92, 96, 97]. The organization of motor unit pools has been the subject
of much scientific attention, and as a result, several improved models of rate coding and
recruitment have been proposed [20, 21, 30]. The inter-spike interval variability, i.e., the
stochastic of the MU firing intervals, has been assessed in detail, models have been proposed,
and the effect on the surface EMG and force signals has been analyzed [6, 25, 65]. An
integration of many of these advances into a single, comprehensive model was missing, a
need that is met by our newly proposed model [78], which will be described in the following
section.

4.2 Realistic modeling of respiratory surface EMGmeasurements
In the context of blind source separation, the purpose of physiological modeling is twofold:
firstly, the choice of a proper source separation model should be driven by a deep
understanding of physiology. And secondly, realistic simulation models are one of the very
few ways in which source separation algorithms can be properly validated, as discussed
above. In this section, a comprehensive mathematical model of motor unit pool
organization, surface electromyography, and force generation will be described. The model
was the subject of a recent journal publication by the author [78] and consolidates various
strands of research on improvements in neuromuscular modeling, alluded to in the
previous section. Several aspects of the proposed model represent combinations of
(improved versions of) previously published model components, while other components
are completely new, designed to adhere to recent experimental findings or to provide more
modeling flexibility. Two mathematical properties of the employed volume conduction
model by Farina and Merletti [32] are proved, both of which enable a clearer interpretation
of the model’s properties. Finally, a static nonlinear input transformation is proposed that
enables easier specification of the simulated force trajectory, as well as a more transparent
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4.2 Realistic modeling of respiratory surface EMGmeasurements

analysis of the simulated muscle’s properties. In another publication of the author [77], the
model was combined with an ECG simulation model and further additive noise to yield a
full simulation model of respiratory surface EMG measurements, feasible to serve as a
validation tool for BSS algorithms (as was the initial intention in designing the model). The
combined model will be employed for exactly this purpose in section 4.5.
The following section 4.2.1 provides a brief overview of the mentioned comprehensive

model of surface EMG and force generation. As the model has already been the subject of
a very comprehensive publication [78], only its main characteristics are sketched here. The
reader is referred to Petersen and Rostalski [78] for a more complete description of the model
and a justification of all modeling choices made. Section 4.2.2 then describes the integration
of that model with an ECG model to yield a realistic simulation of respiratory surface EMG
measurements.

4.2.1 A comprehensivemathematical model of surface EMG and force generation
The model and the simulation process can roughly be separated into three distinct phases:

1. The specification and generation of all simulated muscles, their MU pools, and the
properties of these MUs (and the fibers they contain). The modeling components
relevant for this phase specify the distributions of and relations between the various
properties of the simulated MUs, as well as their geometrical distribution throughout
the muscle.

2. The calculation of the motor unit-electrode transfer functions, and the motor unit
action potentials (MUAPs) resulting at each simulated electrode from a single
activation of each MU. This is where the action potential propagation and volume
conduction models play a key role.

3. The simulation of the stochastic firing processes of each individual MU. Each firing
of each MU generates a corresponding force twitch and MUAP at each electrode, the
superposition of all of which yields the simulated force and surface EMG signals.

Figure 4.3 shows a schematic overview of the path from a muscle activation input to the
output force and EMG signals that is followed by the proposed model; it may provide useful
orientation to the reader while following along the main text. The following sections will
each provide a brief overview of the modeling structure and the main novelties regarding
each of these phases.

Motor unit pool organization

First, recall the main features of motor unit pool organization, discussed in more detail in
section 3.1.1:

• Muscles are organized into pools of motor units (MUs), each consisting of a motor
neuron and the muscle fibers it innervates.

• MUs vary widely in their properties. They are organized according to the size principle,
which states that most relevant electrical or mechanical properties correlate in some
way with MU size, i.e., the number of innervated fibers.
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∑
∑
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rate coding and recruitment

𝐹ref(𝑡) CD(𝑡) 𝜆𝑖(𝑡) 𝐹𝑖(𝑡)⋮ 𝐹(𝑡)⋮

⋮ EMG𝑖(𝑡)⋮ EMG(𝑡)
Figure 4.3 – A schematic overview of the proposed comprehensive model of motor unit
pool organization, surface electromyography, and force generation. A target muscle force
trajectory 𝐹ref(𝑡) is defined, from which the common drive level CD(𝑡) necessary to achieve
this force level is calculated by inverting eq. (4.3). Using the rate coding and recruitment
model described in eq. (4.2), the instantaneous firing rates 𝜆𝑖(𝑡) of the individual MUs
are calculated. From these, firing instants are sampled stochastically, the EMG and force
twitches are simulated and superposed, and the total generated muscle force 𝐹(𝑡) and the
EMG signal EMG(𝑡) at a particular recording location on the skin surface are obtained.
Reproduced and modified with permission from Petersen and Rostalski [78].

• The distribution of MU and muscle fiber properties is continuous, i.e., there are no
distinct types of MUs and muscle fibers.

• MUs in a muscle (and possibly in synergistic muscle groups) receive a common drive
input signal from the CNS. This common drive controls their recruitment and rate
coding.

• Each MU has a distinct recruitment threshold (which is also strongly correlated with
MU size) in terms of the common drive to the MU pool. MUs are de-recruited in
inverse order of recruitment.

• Under many circumstances, rate coding conforms with the onion skin phenomenon,
which states that earlier-recruited MUs discharge at a higher rate than later-recruited
ones.

The novel mathematical model that we proposed [78] conforms with each of these
observations and proposes new model components for most of them.
As opposed tomany previous publications [2, 84], wemodelMU properties as being drawn

from a continuous, multivariate distribution (as opposed to distinct types).4 To begin with
the most prominent size principle parameter, two exponential models have been proposed
in the literature for the distribution of theMU recruitment thresholds. Fuglevand et al. [38]
have proposed to use the relationship

CDrec𝑖 = 𝑒𝑎𝑖100 with 𝑎 = log(100 ⋅ CDfull)𝑁MU ,
where CDrec𝑖 denotes the recruitment threshold of MU 𝑖 in terms of the common drive input
signal, and CDfull denotes the level of common drive at which the last (and largest) MU is
4While Fuglevand et al. [38] didmodelMUproperties as following a continuous relationshipwithMU size, their
purely deterministic model ignored the stochasticity of this relationship [40] and did not take into account
many of the size principle parameters we consider here.
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4.2 Realistic modeling of respiratory surface EMGmeasurements

recruited. Later, De Luca and Contessa [20] have proposed the slightly altered model

CDrec𝑖 = 𝑏𝑖𝑁MU ⋅ 𝑒𝑎𝑖100 with 𝑎 = log( 100⋅CDfull𝑏 )𝑁MU .
The decision for either of these models should be made depending on the characteristics of
the muscle under consideration. Following the size principle, we then proceed to define all
otherMU andfiber properties as stochastic functions of the recruitment threshold. These size
principle parameters in our model include the peak MU twitch force, peak fiber twitch force,
peak single-fiber action potential (SFAP) amplitude, action potential conduction velocity,
and various model parameters characterizing the speed of contraction. All of these play a
role in the characterization of the EMG and force twitches of the individual muscle fibers
and MUs. For each of these quantities, a deterministic relationship with the recruitment
threshold is defined based on physiological measurements and considerations— for details,
refer to Petersen and Rostalski [78]. Most of these physiologically observed relationships
have not been taken into account in previous modeling studies. Following Contessa and De
Luca [19] (who did this for the few parameters they modeled as size principle parameters),
we then draw the actual parameter values from a Weibull distribution with the mean of the
distribution specified by the previously described deterministic relationships.
Besides the recruitment thresholds CDrec𝑖 of the individual MUs, the second model

component determining the discharge behavior of the MUs is the rate coding model. Many
rate coding models have been previously proposed in the literature, which we all found to
suffer from one or multiple drawbacks:

• The classical models [30, 38] have used piece-wise linear models, which represent a
stark simplification of reality. Moreover, the non-smoothness of these models likely
does not conform with physiology.

• More recently, De Luca and Hostage [21] have proposed a linear-exponential model,
which solves someof the above issueswhile suffering fromotherdrawbacks. Themodel
does not describe the significant increase in the slope of the firing rate characteristics
above the point of full recruitment that is necessary to compensate for the fact that
new MUs can no longer be recruited from this point on.

• All models proposed so far use very few parameters to describe the firing rate
characteristics. This is, of course, an advantage because it reduces model complexity,
but on the other, this also limits the flexibility with regards to differing experimental
results. As an example, De Luca and Hostage [21] observed a decline in the initial
firing rates of later-recruited units, whereas Erim et al. [30] observed an increase. The
latter behavior cannot be described using the model of De Luca and Hostage [21].
Similarly, the model of De Luca and Hostage [21] does not allow for an adjustment of
the degree of convergence of the firing rates for high activation levels, which has been
identified as a crucial feature by Fuglevand et al. [38].

For these reasons, we proposed to use the following, new model of rate coding in a motor
unit pool:

𝜆(CD(𝑡); CDrec𝑖 ) = −𝐶1 ⋅ (𝐶2−CD(𝑡)) ⋅CDrec𝑖 +𝐶3 ⋅CD(𝑡)+𝐶4−(𝐶5−𝐶6 ⋅CDrec𝑖 ) ⋅𝑒−CD(𝑡)−CDrec𝑖𝐶7 ,
(4.2)
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Figure 4.4 – Exemplary firing rate characteristics of every tenth MU generated using the
model eq. (4.2). Panel A shows the firing rates as a function of the common drive, whereas
panel B shows them as a function of the (normalized) generated muscle force. Reproduced
with permission from Petersen and Rostalski [78].

where 𝜆(CD(𝑡); CDrec𝑖 ) denotes the firing rate of MU 𝑖 as a function of the common
drive CD(𝑡) and its recruitment threshold CDrec𝑖 , and 𝐶𝑖, 𝑖 = 1,… , 7 are model parameters.
The model eq. (4.2) has a number of desirable properties. It models two different phases of
the firing rate characteristics: a first phase with a steeper slope of the firing rate
characteristics and a second, flatter phase. The transition between the two phases is smooth,
and the slope d𝜆(CD = CDrec𝑖 ; CDrec𝑖 )∕dCDrec𝑖 of the initial firing rates can be adjusted freely,
just like the degree of firing rate convergence for high activation levels. The onion-skin
property

d𝜆(CD; CDrec𝑖 )dCDrec𝑖 < 0
is guaranteed to be fulfilled at all activation levels. Figure 4.4A shows exemplary firing rate
characteristics that have been generated using this model.

We have now defined all of the electrical andmechanical properties of the individual MUs,
as well as their recruitment and rate coding behavior in terms of the common drive. Although
not modeled explicitly, a relationship between the common drive and the resulting muscle
force output is thus implicitly defined as an emerging property of the model. Taking the
average over individual discharge events, the mean generated muscle force as a (nonlinear)
function of the common drive can be computed as

E[𝐹 ∣ CD] = 𝑁MU∑
𝑖=1 𝑔𝑖(𝜆(CD; CDrec𝑖 )) ⋅Ω𝑖 ⋅ 𝜆(CD; CDrec𝑖 ), (4.3)
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4.2 Realistic modeling of respiratory surface EMGmeasurements

where 𝑔𝑖(𝜆𝑖) denotes a nonlinear, firing rate–dependent force gain factor5 and
Ω𝑖 = ∞∫0 𝑓𝑖(𝑡) d𝑡 = 𝑝𝑖 ⋅ 𝜅−𝑚−1 ⋅ Γ(𝑚 + 1),

denotes the total impulse generated by a single force twitch 𝑓𝑖(𝑡) of MU 𝑖, with Γ(𝑥) the
Gamma function. The remaining quantities are parameters of the force twitch model of
Raikova et al. [83] which we employed; see there or in Petersen and Rostalski [78] for more
details.
The nonlinear common drive–force relationship from eq. (4.3) can now be used to further

improve the model and our understanding of it. Firstly, it allows us to express the rate
coding model (4.2), which is formulated as a function of the common drive, as a function
of the generated muscle force instead. This is useful because the common drive in this
model is a latent signal that does not correspond to any measurable quantity: in practice,
measurements of motor unit recruitment and firing rates are usually given as a function of
the generated muscle force. Thus, expressing the rate coding and recruitment model as a
function of the generated muscle force is very desirable. Figure 4.4B shows the firing rate
characteristics as a function of the generatedmuscle force, and an important observation can
be made: it was mentioned earlier that experimentally observed firing rate characteristics
usually exhibit an increase in slope following the point of full recruitment since from there on,
an increase in the firing rates of already-recruited MUs is the only way to increase the force
output (whereas before that point, firing rate increases and further MU recruitment both
act towards this goal). This property now emerges automatically from the model without it
being modeled explicitly. Secondly, and at least equally important, we now have a general
means to control the simulated muscle in such a way that it deterministically generates
the desired muscle force output. To this end, we simply invert the nonlinear relationship
between the common drive input and the muscle force output6 and use this relationship as
a nonlinear input transformation (see the first block in fig. 4.3), which transforms a desired
muscle force output to the common drive input that is required to achieve that level ofmuscle
force. To the author’s knowledge, this way of analyzing the nonlinear relationship between
the muscle input signal and the generated force output, as well as the use of a linearizing
input transformation, are both novel concepts that have not been proposed before.
The last important aspect of a motor unit pool model regards the geometrical arrangement

of the individual motor units and the fibers within them. The single-fiber action potential
(SFAP) waveform detected by an electrode depends not only on the properties of the action
potential and the fiber but also crucially on the distance and the type of tissue separating
the fiber and the electrode. Thus, the way in which fibers and motor units are distributed
throughout the muscle cross-section has a huge influence on the resulting surface signal.
In our model, we propose the following novel method to generate a random fiber and MU
arrangement:

1. The muscle is divided into𝑀 parts of equal size, each of which will contain 𝑁MU∕𝑀
MUs. This serves to achieve a more uniform distribution of MUs throughout the
muscle.

5We use the expression proposed by Contessa and De Luca [19]; see there or Petersen and Rostalski [78] for
details.

6The relationship is monotonic, whence inversion is feasible.
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2. In each of these muscle parts, MU centers are sampled i.i.d. from a uniform
distribution.

3. EachMU is assigned an elliptic region throughout which its fibers are distributed. The
area 𝐴𝑖 = 𝑁fib𝑖 ∕𝜌 of this region is calculated from the number𝑁fib𝑖 of fibers innervated
by this MU and the MU fiber density 𝜌 of fibers per unit area.

4. Similarly, fiber locations within the muscle cross-section are sampled i.i.d. from a
uniform distribution supported on the MU area. Along the fiber length, the location
of the NMJ and the two fiber ends is randomized as well, as described previously [13,
62].7

5. Parts of MU territories which exceed the muscle boundaries are cut off, and the
number 𝑁fib𝑖 of innervated fibers is reduced for these MUs in proportion to the
reduction in MU area. To maintain the size principle, the remaining size principle
parameters are adjusted to the new MU size as well.

This method achieves a MU and fiber arrangement that attains the following desirable
properties:

1. MU regions overlap, which is a well-known feature of muscle physiology.

2. In the probabilistic limit, the overall muscle fiber density remains constant throughout
the whole muscle, which is in accordance with various physiological studies [52, 93].
This stands in contrast to various other approaches for handling boundary MUs, as
discussed in detail in Petersen and Rostalski [78].

3. All MUs (including the ones on the muscle boundary) conform with the size principle.

A very similar method was used by Fuglevand et al. [38]. What differentiates our method
from theirs is, firstly, the division of the muscle into muscle regions to reduce fiber density
variability, secondly, the special muscle boundary treatment described above, and thirdly,
the use of elliptic MU regions as opposed to the less flexible circular regions they used.
Carriou et al. [13] and Konstantin et al. [54] have proposed the use of a deterministic
placement algorithm instead of a purely stochastic method as we did. In their method, each
new MU is placed such that the distance to the already-placed MUs is maximized. Finally,
Navallas et al. [66] have followed a slightly different path: they solve the placement problem
by explicitly minimizing the variability of the fiber density throughout the muscle. More
recently, this method has been extended to also take regionalized MU placement into
account [85], which had been observed physiologically [28]. These methods likely produce
a more realistic MU and fiber distribution throughout the muscle than our method, but
they are also more complex. The choice of the placement algorithm to use will thus depend
on the particular target application of the resulting simulation model.

7This is an important step to prevent unrealistically sharp MUAPs which would result from placing all NMJs
and fiber ends at exactly the same positions.
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Volume conduction andMUAP calculation

Having defined all the electrical and mechanical properties of the individual MUs, as well
as the organizing principles of the whole MU pool that makes up a muscle, we now turn to
modeling the surface EMG signal: simulating realistic surface EMG (and force) signals was,
after all, the initial motivation for creating the present model. For this model component, we
reuse the analytic volume conductor model first proposed by Farina and Rainoldi [36] and
the intracellular action potential propagation model described by Farina and Merletti [32].
Briefly, each muscle fiber is assumed to lie in an infinite, homogeneous layer of anisotropic
muscle tissue, above which there are equally infinitely extended layers of isotropic fat and
skin tissue, both of certain thicknesses. Each fiber is represented by a straight line of a certain
length, which lies parallel to the skin surface, andwith the neuromuscular junction placed at
some point along the fiber. The model of Rosenfalck [86] is used for the intracellular action
potential (IAP) waveform. The generation (at the NMJ), propagation (along the two fiber
halves) and extinction (at the two fiber ends) of the IAP is described as [32]𝚤(𝑧, 𝑡) = dd𝑧 [𝜓(𝑧 − 𝑧NMJ − 𝑣𝑡)𝑝1(𝑧) − 𝜓(−𝑧 + 𝑧NMJ − 𝑣𝑡)𝑝2(𝑧)] , (4.4)

where 𝑧 denotes the spatial variable along the muscle fiber, 𝑧NMJ the location of the
neuromuscular junction (NMJ), and 𝑣 the IAP’s propagation velocity.8𝑝1(𝑧) = 𝐻(𝑧−𝑧NMJ)−𝐻(𝑧−(𝑧NMJ+𝐿1)) and 𝑝2(𝑧) = 𝐻(𝑧−(𝑧NMJ−𝐿2))−𝐻(𝑧−𝑧NMJ)

(4.5)
denote the characteristic functions of the two fiber halves, with 𝐿1 and 𝐿2 the distances
between theNMJ and the right and left tendon, respectively, and𝐻(𝑧) theHeaviside function.
The function 𝜓(𝑧) = d𝑉𝑚(−𝑧)d𝑧 (4.6)

denotes the voltage gradient across the fiber membrane along the fiber axis, where 𝑉𝑚(𝑧)
denotes the trans-fiber membrane voltage wave shape.9 Here, we use the model

𝑉𝑚(𝑧 [mm]) = {96mVmm−3𝑧3𝑒−𝑧 − 90mV if 𝑧 > 0, and−90mV otherwise,
(4.7)

originally proposed by Rosenfalck [86], which has also been used in previous studies [13,
32].
Contrary to claims in Farina and Merletti [32] and Petersen and Rostalski [78], 𝚤(𝑧, 𝑡) does

not describe a distributed, time-varying current density source: a fiber-dependent scaling
factor and a unit conversion are missing. Assuming a cylindrical homogeneous muscle fiber
of radius 𝑟, the trans-fiber membrane current per unit length 𝑖𝑚(𝑧) (in A∕m) is related to the
trans-fiber membrane voltage 𝑉𝑚(𝑧) via [8, 80]𝑖𝑚(𝑧) = 𝜎𝑖𝑐𝜋𝑟2d2𝑉𝑚(𝑧)d𝑧2 ,
8We assume a constant IAP propagation velocity here to simplify calculations. It is known, however, that 𝑣
changes with, e.g., the MU’s firing rate [71]. Refer Dideriksen et al. [26] for an efficient method to simulate
different propagation velocities.

9Refer, e.g., to Plonsey and Barr [81] for an in-depth discussion of the relevance of choosing an appropriate
model for 𝑉𝑚(𝑧).
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Figure 4.5 – Exemplary simulated single-fiber action potentials (SFAPs). These represent
the potential change generated by a single discharge of a single muscle fiber, detected by
three different electrodes placed close to the NMJ (solid), in between the NMJ and the
fiber end (short dashes) and above the fiber end (long dashes). The constant 𝑘scale denotes
an arbitrary, static EMG scaling factor. Reproduced with permission from Petersen and
Rostalski [78].

where 𝜎𝑖𝑐 denotes the intracellular conductivity. Thus, the constant, fiber-dependent
scaling factor 𝜎𝑖𝑐𝜋𝑟2 turns 𝚤(𝑧, 𝑡) into a proper current density source, and moreover serves
to explicate the (quadratic) dependency of the SFAP amplitude on the fiber diameter.
Combining the IAP model (4.4) to (4.7) with the three-layer volume conductor model

of Farina and Rainoldi [36], an analytical expression for the time course of a single action
potential measured by a surface electrode at a particular position on the skin surface can
be derived [32, 78].10 The evaluation of said analytical expression requires the evaluation
of a double integral [32, 78]. In the author’s master’s thesis, it was demonstrated that the
integration kernel only has removable singularities, and therefore, a numerical integration
scheme is guaranteed to converge [74]. The solution of this numerical integration problem is
numerically moderately expensive but tractable [13, 78]. Figure 4.5 shows a few single-fiber
action potentials (SFAPs) simulated using this model.
While the IAP propagation model (4.4) might appear somewhat ad hoc, we could

demonstrate in our recent paper [78] that the model can be equivalently formulated as𝚤(𝑧, 𝑡) = GEN(𝑡) 𝛿(𝑧 − 𝑧NMJ) + 𝜓′(𝑧 − 𝑧NMJ − 𝑣𝑡)𝑝1(𝑧) + EOF1(𝑡) 𝛿(𝑧 − 𝑧NMJ − 𝐿1) (4.8)+ 𝜓′(−𝑧 + 𝑧NMJ − 𝑣𝑡)𝑝2(𝑧) + EOF2(𝑡) 𝛿(𝑧 − 𝑧NMJ + 𝐿2),
with the Dirac distribution 𝛿, the action potential extinction componentsEOF1(𝑡) = −𝜓(𝐿1 − 𝑣𝑡) (4.9)

and EOF2(𝑡) = −𝜓(𝐿2 − 𝑣𝑡), (4.10)
10The expression and its derivation are not shown here because they are not new and rather long.
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4.2 Realistic modeling of respiratory surface EMGmeasurements

at the two fiber ends, and the potential generation componentGEN(𝑡) = 2𝜓(−𝑣𝑡) (4.11)

at the NMJ. This equivalence is the subject of lemma 1, stated and proved below. While
both formulations are mathematically equivalent, the formulation in eq. (4.8) renders, in
the author’s opinion, the structure of the model and the meaning of the different
components more clear: there is a potential generation component at the NMJ, two
propagating components moving towards the two fiber ends at constant velocity 𝑣, and two
corresponding end-of-fiber extinction components. Moreover, we were able to demonstrate
that (under mild technical assumptions) it holds for both model formulations that∞∫−∞ 𝚤(𝑧, 𝑡) d𝑧 = 0 ∀ 𝑡, (4.12)

or in other words: the sum of all incoming and outgoing currents across the fiber is zero
at all times. This property is well-justified by the quasi-stationarity of electrophysiological
processes [81], and is also in agreement with the predictions of the Hodgkin-Huxley model
of action potential propagation [53]. This quasi-stationarity property will be the subject
of lemma 2, also stated and proved below. Note that both lemmata and their proofs are
reproduced verbatim from Petersen and Rostalski [78].

Lemma 1. The expressions given in equations (4.4) and (4.8) to (4.11) are equivalent, assuming
that 𝜓 ∈ 𝐶∞.
Proof. Expanding all terms in equation (4.4) yields

𝚤(𝑧, 𝑡) = dd𝑧 [𝜓(𝑧 − 𝑧NMJ − 𝑣𝑡)𝐻(𝑧 − 𝑧NMJ)] − dd𝑧 [𝜓(𝑧 − 𝑧NMJ − 𝑣𝑡)𝐻(𝑧 − 𝑧NMJ − 𝐿1)]− dd𝑧 [𝜓(−𝑧 + 𝑧NMJ − 𝑣𝑡)𝐻(𝑧 − 𝑧NMJ + 𝐿2)] + dd𝑧 [𝜓(−𝑧 + 𝑧NMJ − 𝑣𝑡)𝐻(𝑧 − 𝑧NMJ)].
Note that the derivatives can only be understood in the sense of distributions since the
derivative of the Heaviside function 𝐻(𝑧) can not be defined in the classical sense at 𝑧 = 0.
For some basic properties of distributions, refer to appendix 1.
Assuming 𝜓 ∈ 𝐶∞ and recalling that ⟨(𝜓𝐻)′, 𝜁⟩ = ⟨𝜓′𝐻+𝜓 𝛿, 𝜁⟩ (refer to appendix 1), the

duality ⟨𝚤(𝑡), 𝜁⟩ can hence be formulated as⟨𝚤(𝑡), 𝜁⟩ = ⟨𝜓′𝑧NMJ+𝑣𝑡𝐻𝑧NMJ , 𝜁⟩ + ⟨𝜓𝑧NMJ+𝑣𝑡𝛿𝑧NMJ , 𝜁⟩ − ⟨𝜓′𝑧NMJ+𝑣𝑡𝐻𝑧NMJ+𝐿1 , 𝜁⟩− ⟨𝜓𝑧NMJ+𝑣𝑡𝛿𝑧NMJ+𝐿1 , 𝜁⟩ + ⟨𝜓′𝑧NMJ−𝑣𝑡𝐻𝑧NMJ−𝐿2 , 𝜁⟩ − ⟨𝜓𝑧NMJ−𝑣𝑡𝛿𝑧NMJ−𝐿2 , 𝜁⟩− ⟨𝜓′𝑧NMJ−𝑣𝑡𝐻𝑧NMJ , 𝜁⟩ + ⟨𝜓𝑧NMJ−𝑣𝑡𝛿𝑧NMJ , 𝜁⟩= ⟨𝜓′𝑧NMJ+𝑣𝑡(𝐻𝑧NMJ −𝐻𝑧NMJ+𝐿1) + 𝜓′𝑧NMJ−𝑣𝑡(𝐻𝑧NMJ−𝐿2 −𝐻𝑧NMJ), 𝜁⟩+ ⟨(𝜓𝑧NMJ+𝑣𝑡 + 𝜓𝑧NMJ−𝑣𝑡)𝛿𝑧NMJ , 𝜁⟩ − ⟨𝜓𝑧NMJ+𝑣𝑡𝛿𝑧NMJ+𝐿1 + 𝜓𝑧NMJ−𝑣𝑡𝛿𝑧NMJ−𝐿2 , 𝜁⟩
with notations 𝑔′ = d 𝑔(𝑧)d𝑧 , 𝑔(𝑥) = 𝑔(−𝑥), 𝑔𝑎(𝑥) = 𝑔(𝑥 − 𝑎) and 𝑔𝑎(𝑥) = 𝑔(−𝑥 + 𝑎). This is
exactly equivalent to equations (4.8) to (4.11).
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Chapter 4 Modeling and blind source separation of respiratory surface EMG

Lemma 2. For compactly supported 𝜓(𝑧), the intracellular action potential (IAP) model given
in equations (4.8) to (4.11) (or equivalently, equation (4.4)) yields a formulation of 𝚤(𝑧, 𝑡) that
satisfies the condition (4.12). This also holds true if the characteristic functions 𝑝1∕2(𝑧) are
replaced by smooth window functions 𝑤1∕2(𝑧) which fulfill𝑤1(𝑧NMJ + 𝐿1) = 𝑤1(𝑧NMJ) = 𝑤2(𝑧NMJ) = 𝑤2(𝑧NMJ − 𝐿2) = 0
and which yield products 𝜓(𝑧)𝑤1∕2(𝑧) that are differentiable with an integrable derivative.11
Proof. First, we consider the case of 𝚤(𝑧, 𝑡) as described by equations (4.8) to (4.11), i.e., using
the characteristic functions 𝑝1(𝑧), 𝑝2(𝑧). For compactly supported 𝜓(𝑧),∞∫−∞ 𝜓′(𝑧) d𝑧 = 0
generally holds. Furthermore,∞∫−∞ GEN(𝑡) 𝛿(𝑧 − 𝑧NMJ) d𝑧 = 2𝜓(−𝑣𝑡) = 2 −𝑣𝑡∫−∞ 𝜓′(𝑧) d𝑧,

∞∫−∞ EOF1(𝑡) 𝛿(𝑧 − 𝑧NMJ − 𝐿1) d𝑧 = −𝜓(𝐿1 − 𝑣𝑡) = − 𝐿1−𝑣𝑡∫−∞ 𝜓′(𝑧) d𝑧,
and equivalently for EOF2. Combining everything yields∞∫−∞ 𝚤(𝑧, 𝑡) d𝑧 = 2 −𝑣𝑡∫−∞ 𝜓′(𝑧) d𝑧 − 𝐿1−𝑣𝑡∫−∞ 𝜓′(𝑧) d𝑧 − 𝐿2−𝑣𝑡∫−∞ 𝜓′(𝑧) d𝑧

+ 𝑧NMJ+𝐿1∫𝑧NMJ 𝜓′(𝑧 − 𝑧NMJ − 𝑣𝑡) d𝑧 + 𝑧NMJ∫𝑧NMJ−𝐿2 𝜓′(−𝑧 + 𝑧NMJ − 𝑣𝑡) d𝑧
= 0.

Secondly, considering the case of smooth window functions 𝑤1∕2(𝑧), we have
∞∫−∞ 𝚤(𝑧, 𝑡) d𝑧 = ∞∫𝑧NMJ dd𝑧 [𝜓(𝑧 − 𝑧NMJ − 𝑣𝑡)𝑤1(𝑧)] d𝑧 − 𝑧NMJ∫−∞ dd𝑧 [𝜓(−𝑧 + 𝑧NMJ − 𝑣𝑡)𝑤2(𝑧)] d𝑧

= 0
by the fundamental theorem of calculus if the conditions on 𝑤1∕2(𝑧) stated in the lemma
hold.
11The Tukey window function employed by Al Harrach et al. [2] and Carriou et al. [13] falls into the class of
window functions supported by this lemma.
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4.2 Realistic modeling of respiratory surface EMGmeasurements

Firing train calculation and superposition

Now that the MU pool and all of its properties are set up, and we have a way of calculating
the SFAPs as well as the force twitches generated by individual muscle fibers, we can move
towards the simulation of complete sEMGand force signals, resulting frommany overlapping
twitches of many fibers. Assuming linear superposition like most other authors [39, 45], we
have EMG(𝑡) = 𝑁MU∑

𝑖=1
𝑁𝐴𝑃𝑖∑
𝑗=1MUAP𝑖(𝑡 − 𝑡𝑖𝑗), (4.13)

where𝑁MU denotes the number of MUs,𝑁𝐴𝑃𝑖 the number of firing events of that MU, 𝑡𝑖𝑗 the𝑗th firing instant of MU 𝑖, and
MUAP𝑖(𝑡) = 𝑁fib𝑖∑

𝑗=1 SFAP𝑖𝑗(𝑡) (4.14)

themotorunit action potential, obtained by summing over the the SFAPs of allmuscle fibers 𝑗
belonging to MU 𝑖. Similarly, for the force signal, we assume that the force generated by the
whole muscle is given by the superposition [38]

𝐹(𝑡) = 𝑁MU∑
𝑖=1 𝐹𝑖(𝑡) = 𝑁MU∑

𝑖=1
𝑁𝐴𝑃𝑖∑
𝑗=1 𝑓𝑖(𝑡 − 𝑡𝑖𝑗) (4.15)

of the individual force twitches of allMUs, where 𝐹𝑖(𝑡) denotes the force contribution ofMU 𝑖
over time.
The only unknown quantity in section 4.3 and eq. (4.15) are the exact firing instants 𝑡𝑖𝑗 of

all MUs. Their calculation is (slightly) complicated by two facts:

1. The distribution of the inter-spike intervals (ISIs) is known to be stochastic, i.e., not
exactly determined by the inverse of the firing rate.

2. The common drive, which determines each MU’s firing rate, changes over time.
Moreover, depending on the exact simulation scenario, these changes may not be
known in advance.

We employ themethod proposed by Fuglevand et al. [38] for the calculation of the ISIs, which
conforms with the two above observations. Moreover, to model the decreased ISI variability
at increased activation levels, we use the expression proposed by Moritz et al. [65] for the
coefficient of variation of the ISIs. As opposed to (to the author’s knowledge) all previous
simulation studies, firing instants in our model are not constrained to sampling instants
but may also lie in-between two sampling instants. For more details, refer to Petersen and
Rostalski [78].

4.2.2 A simulation model of vector cardiography
To model the effect of cardiac interference on surface EMG measurements, we employ a
simple, phenomenological model of vectorcardiography. The model has been proposed by
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Chapter 4 Modeling and blind source separation of respiratory surface EMG

Figure 4.6 – The geometry of the simulation model used for validating source separation
on surface respiratory EMG measurements. Three muscles are simulated: the respiratory
diaphragm and the left and right transversus abdominis muscles. The red dot on the upper
chest marks the position of the heart dipole vector. Reproduced with permission from
Petersen et al. [77].

Sameni et al. [90], with the explicit intent of using it for the validation of a BSS procedure. It
describes the heart as a single dipole vector 𝑑(𝑡) ∈ ℝ3 that rotates with the heart rate within
a three-dimensional (infinite) volume conductor, representing the spatial filtering effect of
the body tissue. The time-varying measurement signal at an electrode is then given by the
projection 𝜙(𝑡) − 𝜙0 = 𝑑(𝑡)𝖳𝑟4𝜋𝜎|𝑟|3 (4.16)

of the heart dipole onto the distance vector 𝑟 = 𝑥electrode − 𝑥heart between the recording
electrode and the assumed heart position. In eq. (4.16), 𝜙0 ∈ ℝ denotes the reference
potential, and 𝜎 the conductivity of the biological tissues [90]. For the time course of the
heart dipole 𝑑(𝑡), a Gaussian mixture model inspired by the popular ECG model of
McSharry et al. [61] is used. For the whole cardiac model component, the implementation
provided by the open-source electrophysiological toolbox (OSET) is used [89].

4.2.3 Model parametrization for BSS validation
The proposedmodel shall now be employed for quantifying the performance of an algorithm
for the separation of respiratory surface EMG measurements. The algorithm is discussed in
detail in the following section 4.3. To this end, we construct a combined model consisting
of the respiratory diaphragm (the main inspiratory muscle), the left and right transversus
abdominis muscles (which are important expiratory muscles [94]), and the heart. Four
differential measurement channels are simulated; the geometry of the complete simulation
model is illustrated in fig. 4.6. The simulated diaphragm consists of 300 MUs, whereas each
of the simulated transversus abdominis muscles consists of 100 MUs. The geometry of the
simulation model is the same as was used in Petersen et al. [77]—however, the simulation
was performed again here, since the muscle model has been significantly improved since
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that earlier publication (as described in section 4.2.1 and Petersen and Rostalski [78]). The
simulated signals are given byEMG𝑝𝑘 = EMGsim𝑝𝑘 + 𝑐ECGECGsim𝑝𝑘 + 𝑐𝜈𝜈𝑘, 𝑝 = 1,… , 𝑃, (4.17)

where 𝜈𝑘 ∼𝒩(0, 1), and 𝑐ECG and 𝑐𝜈 denote two constant, scalar scaling factors.
4.3 TRINICON-based blind source separation on respiratory

surface EMGmeasurements
This section can be considered an extended description and motivation of the algorithm we
proposed recently in Buchner et al. [12] and Petersen et al. [77]. To briefly recall the
problem statement given in section 4.1, we would like to identify 𝑄 = 4 source signals
representing different physiological processes from 𝑃 = 4measurements EMG1𝑘,… ,EMG𝑃𝑘
of respiratory surface EMGmeasurements. This is thus a multi-input multi-output (MIMO)
separation problem, and we would like to perform separation at themuscle group level. Note
that already from this problem specification, it is evident that the aim is not to recover some
actual physiological signal: there is no physiological signal in the body that could
hypothetically be measured, and that captures, e.g., the activity of the inspiratory or
expiratory muscles as a group in the desired sense.12 Moreover, we are not even interested
in exactly recovering some specified signal— the aim is simply to obtain separated signals
that in some qualitative way capture the activity of the inspiratory muscles, the expiratory
muscles, and the heart.
As was also mentioned in section 4.1, the choice of a propermixing model represents an

important step in the design of an appropriate source separation procedure. For an EMG
signal EMG(𝑡)measured at a single electrode or a pair of electrodes, we saw in section 4.3
that EMG(𝑡) = 𝑁MU∑

𝑖=1
𝑁𝐴𝑃𝑖∑
𝑗=1MUAP𝑖(𝑡 − 𝑡𝑖𝑗)

where MUAP𝑖(𝑡) denotes the motor unit action potential (MUAP) measured at the
electrode(s) due to a single firing of MU 𝑖 at time 𝑡 = 0. This can be (and often is [44–46,
68]) rewritten as the convolution

EMG(𝑡) = 𝑁MU∑
𝑖=1 MUAP𝑖(𝑡) ∗ 𝑠𝑖(𝑡)

with the spike train signal 𝑠𝑖(𝑡) = { 1 if ∃𝑗 ∶ 𝑡 = 𝑡𝑖𝑗0 else.

12There is a number of studies claiming to measure “neural respiratory drive”. What they usually measure is an
invasive EMG signal of the diaphragm obtained from an esophageal catheter. This obviously only measures
the activity of one inspiratory muscle, namely, the diaphragm. Moreover, such an invasive EMG signal is, of
course, just one of infinitely many conceivable transformations of the neural drive.
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Switching to a discrete-time model (and assuming, for simplicity’s sake, that firing instants
are always sampling instants), one obtains

EMG𝑘 = 𝑁MU∑
𝑖=1 MUAP𝖳𝑖 𝑠𝑖𝑘 (4.18)

where MUAP𝑖 = (MUAP(0) MUAP(𝑇𝑠) ⋯ MUAP((𝐿 − 1) ⋅ 𝑇𝑠))𝖳
and 𝑠𝑖𝑘 = (𝑠𝑖𝑘 𝑠𝑖𝑘−1 ⋯ 𝑠𝑖𝑘−𝐿+1)𝖳 ,
with the sampling time𝑇𝑠 and theMUAPfilter length𝐿. If one chooses𝑄 = 𝑁MU, eq. (4.18) is
exactly identical to the convolutive BSS mixing model introduced in eq. (4.1) . This has been
exploited by a number of researchers who used convolutive BSS to decomposemulti-channel
sEMG signals into the impulse trains of individualMUs [45–47, 68]. This approach, however,
requires the use of high-density sEMG measurements to obtain a number of electrodes in
the order of the number of relevant MUs,13 and moreover, it still leaves open the association
of the identified MUs with different muscles or muscle groups. For these reasons, this is not
a feasible avenue in the setting we’re considering.
Instead of usingmany electrodes and performing separation and identification on the level

of singleMUs, we thus propose to perform convolutive separation of just𝑄 = 4 source signals
with 𝑃 = 4 differential sEMG measurements, hypothesizing that this will identify source
signals corresponding to the different (inspiratory, expiratory, cardiac) muscles groups that
share neural activation signals. This hypothesis corresponds to the assumption that there
are inspiratory, expiratory, cardiac, and noise source signals that propagate from four point
sources within the body to the four different recording sites, experiencing different linear
filtering transformations along the way. This assumption is, of course, highly unrealistic:
even the contributions of a singlemuscle (as opposed to a muscle group) evoked at different
electrodes cannot be described accurately by the same source signal filtered differently with
a linear filter for each electrode—due to the differing distances between individualMUs and
electrodes. This is, of course, evenworse when considering themuscle group level, where the
inspiratory component of, e.g., an intercostal sEMG measurement is made up of MU firing
events completely different from the corresponding diaphragmatic sEMGmeasurement. The
assumed mixing model can thus only hold in a broad, statistical sense: there are stochastic
activation signals, the instantaneous power of which roughly captures the neural activation
of one of the relevant muscle groups, and the contribution of these activation signals to
the different measurements can be identified from their different temporal and frequency
signatures. We will assess empirically in section 4.5 whether such a broad, statistical model
can be used to reliably separate the activity of the different muscle groups.
For now, the challenge is to estimate 𝑃 ⋅𝑄⋅𝐿 filtering coefficients, using only the 𝑃 available

measurement signals EMG1𝑘,… ,EMG𝑃𝑘 . Based on the typical length of a MUAP of a few
dozen milliseconds (and a sampling rate of 𝑓𝑠 = 1kHz), we choose a demixing filter length
of 𝐿 = 256 samples and thus have a total of 4096 coefficients to estimate. Note that we do not
13In practice, using 𝑄 < 𝑁MU electrodes is feasible because relatively few MUs cause most of the potential
variation (because they are large or close to the skin surface). For exemplary recent evidence, see, e.g.,
Botelho et al. [8].
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attempt to identify themixing filters ℎ𝑝𝑞 ∈ ℝ𝐿 but instead identify demixing filters𝑤𝑝𝑞 ∈ ℝ𝐿
such that14 𝑠𝑞𝑘 = 𝑃∑

𝑝=1𝑤𝖳𝑝𝑞𝑥𝑝𝑘 ∀ 𝑞 = 1…𝑄.
As was already mentioned earlier, to solve the resulting convolutive BSS problem, we use
the TRIple-N Independent component analysis for CONvolutive mixtures (TRINICON)
framework for broadband adaptive MIMO signal processing previously proposed by
Buchner et al. [9, 10]. This general framework subsumes many previously proposed BSS
algorithms, and it incorporates the three complementary assumptions of non-whiteness,
non-Gaussianity, and non-stationarity of the source signals.
Algorithm 5 summarizes the algorithm, reproduced and modified (with permission) from

Petersen et al. [77]. It has been fully derived and implemented by H. Buchner and
represents a special case of the general broadband frequency-domain coefficient update
equation (10.74) in Buchner et al. [9], see section 3.2.2 in that document for more details.
First, as a preprocessing step, a spatial prewhitening is performed. To this end, an
eigenvalue decomposition of the correlation matrix of the signals measured at the different
channels is computed, and the power of the different modes is normalized (see, e.g.,
Hyvärinen et al. [51, p. 159]). This step is crucial in the present application since the level
difference between the cardiac component and the EMG and noise components is so
large—without the prewhitening step, the numerical BSS problem would often be
ill-conditioned. The actual source separation is then performed in the time-frequency
domain by minimizing Shannon’s mutual information between the identified source
signals. Assuming a non-Gaussian joint distribution of the source signals,15 an expression
for the mutual information can be derived analytically [9] that explicitly penalizes
stationarity, Gaussianity, and whiteness of the estimated source signals. As a
time-frequency distribution, the short-time Fourier transform (STFT) with a Hanning
window is chosen, and the resulting numerical minimization problem is solved using a
(natural) gradient descent algorithm. The employed broadband separation
approach— instead of performing separation purely in the frequency domain—resolves
the well-known permutation ambiguity problem that plagues many previously proposed
narrowband convolutive BSS methods [10]. To resolve the internal scaling ambiguity— the
problem that source signals are only defined up to the application of an arbitrary filtering
stage—we employ theminimum distortion principle proposed first by Matsuoka et al. [59].
While a fully offline implementation is pursued here, a block online implementation of the
same algorithm is readily available [9] by simply initializing the optimization problem for
each block with the solution of the previous block.

4.4 Simulation-based BSS performance quantification
Even though in a simulation, the true time course of the individual muscles’ activity is
known, it is non-trivial to quantify the performance of a source separation algorithm for
14The conceptually more difficult identification of the true mixing filters and source signals is known as

multichannel blind deconvolution, see, e.g., Amari et al. [4].
15Here, we assume a multivariate Laplacian distribution, because surface EMG signals are known to exhibit

spectra that resemble a Laplacian distribution [15, 78].
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Chapter 4 Modeling and blind source separation of respiratory surface EMG

Algorithm 5: TRINICON-based Convolutive Blind Source Separation
1 Function CBSS(𝑥1,… , 𝑥𝑃)

Input :Mixture measurements 𝑥1,… , 𝑥𝑃 ∈ ℝ𝑁𝑆 , demixing filter
length 𝐿.

Output :Source signals 𝑠1,… , 𝑠𝑄 ∈ ℝ𝑁𝑆 and demixing
filters 𝑤𝑝𝑞 ∈ ℝ𝐿.

2 begin
1) Spatial prewhitening

Eigenvalue decomposition of the spatial correlation matrix

3 𝐸𝐷𝐸𝖳 ← E[𝑥1∶𝑃𝑘 (𝑥1∶𝑃𝑘 )𝖳] with 𝑥1∶𝑃𝑘 = (𝑥1𝑘 ⋯ 𝑥𝑃𝑘 )𝖳
4

(�̃�1𝑘 ⋯ �̃�𝑃𝑘 )𝖳 ← 𝐸𝐷−1∕2𝐸𝖳𝑥1∶𝑃𝑘 Spatial sphering

2) Main algorithm:

Short-time Fourier transform using a Hanning window (𝑁𝐵 blocks)
5 𝑋𝑝𝑚𝜈 ⇐ �̃�𝑝𝑘 ∀ 𝑝 = 1,… , 𝑃 Frequency index 𝜈 = 0,… , 𝐿 − 1, block𝑚
6 𝑋𝑝𝑚𝜈 ← 𝑋𝑝𝑚𝜈 − 1𝑁 ∑𝑁−1𝑚′=0 𝑋𝑝𝑚′𝜈 Center solution

Initialize demixing filter coefficients
7 𝑤0𝑝𝑞 ← (1 0 ⋯ 0)𝖳 ∈ ℝ𝐿 ∀ 𝑝, 𝑞
8 𝑊0𝑝𝑞𝜈 ⇐ 𝑤0𝑝𝑞𝑘 Calculate FFT of filter coefficients

9 for 𝓁 = 1 to 𝓁max do
Circular convolution to obtain (preliminary) source signal estimates

10 𝑆𝑚𝜈 ←𝑊𝓁−1𝜈 𝑋𝑚𝜈 with

𝑋𝑚𝜈 = (𝑋1𝑚𝜈 ⋯ 𝑋𝑃𝑚𝜈)𝖳𝑆𝑚𝜈 = (𝑆1𝑚𝜈 ⋯ 𝑆𝑄𝑚𝜈)𝖳
𝑊𝓁𝜈 = ⎛⎜⎜⎝

𝑊𝓁11𝜈 ⋯ 𝑊𝓁𝑃1𝜈⋮ ⋱ ⋮𝑊𝓁1𝑄𝜈 ⋯ 𝑊𝓁𝑃𝑄𝜈
⎞⎟⎟⎠

11 𝑏𝑝𝑚 ←√ 1𝑀 ∑𝑀−1𝜈=0 |𝑆𝑝𝑚𝜈|2 Broadband normalization factors

12 Φ𝑚𝜈 ← (𝑆1𝑚𝜈∕𝑏1𝑚 ⋯ 𝑆𝑄𝑚𝜈∕𝑏𝑄𝑚)𝖳 Multivariate score function

Perform natural gradient descent coefficient update (step size 𝜇)
13 𝑊𝓁𝜈 ←𝑊𝓁−1𝜈 + 𝜇 [𝐼 − 1𝑁𝐵 ∑𝑁𝐵−1𝑚=0 Φ𝑚𝜈𝑆𝖧𝑚𝜈]𝑊𝓁−1𝜈
14 𝑊𝓁𝜈 ← diag((𝑊𝓁𝜈 )−1)𝑊𝓁𝜈 Apply minimum distortion principle

15 end

16 𝑤𝓁max𝑝𝑞𝑘 ⇐𝑊𝓁max𝑝𝑞𝜈 Time domain filter coefficients from inverse FFT

17
(𝑠1𝑘 ⋯ 𝑠𝑄𝑘 )𝖳 ⇐𝑊𝓁𝜈 𝑋𝑚𝜈 Source signal estimates from inverse STFT

18 end

110
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recovering this activity. This is due to a number of complicating factors. Firstly, and most
trivially to solve, there is, of course, an inherent ambiguity regarding the order of the
identified source signals. It is thus a priori unclear which of the identified source signals
corresponds to, e.g., inspiratory or expiratory activity, and this must be identified after the
separation has been performed. Secondly, as with any convolutive blind source separation
procedure [9], each individual identified source signal is only specified up to filtering with
an arbitrary FIR filter of the same length 𝐿 as the demixing filters. Thus, exact point-wise
errors between the recovered and the original source signals are not a correct measure of
separation performance. Thirdly, and most crucially, in the given setting, the model does
not describe the system under consideration correctly16: while the mixing model is capable
of representing the spatial filtering properties of the biological tissues separating muscles
and electrodes, the source model is inaccurate, as discussed in detail above: In reality, there
are hundreds of sources (muscle fibers) continuously distributed throughout the upper
body, each of which is associated with a different transmission path to the electrodes and,
hence, different mixing filters. Our separation model, on the other hand, assumes just four
point sources. Thus, one cannot expect the algorithm to correctly recover the exact activity
of the different (inspiratory, expiratory, cardiac) muscle groups.
To solve these challenges, we devised the following validation procedure [77]. To obtain

an inspiratory reference (envelope) signal EMGinsp, we consider the raw EMG signal of just
the diaphragm muscle to the closest electrode, take the absolute of that signal, and calculate
a 101-sample moving average. The same envelope calculation is repeated for the
contribution of just the two transversus abdominis muscles to their closest electrodes to
obtain a corresponding expiratory EMGexp, and for each of the identified source signals 𝑠𝑞 to
obtain a corresponding envelope signal 𝑠𝑞. In order to compare the identified source
envelope signals with the reference signals while taking the aforementioned filtering
ambiguity into account, we minimize the mean absolute error concerning the inspiratory
reference signal (MAEbss,insp) by solving𝛼∗, 𝛽∗, 𝜅∗, 𝑞∗ = argmin𝛼∈ℝ+,𝛽∈ℝ,𝜅∈ℤ,𝑞∈{1,…,𝑄}E

[|||||EMGinsp𝑘 − 𝛼 ⋅max (0, 𝑠𝑞𝑘−𝜅 − 𝛽)|||||], (4.19)

and equivalently for MAEbss,exp using EMGexp. Finally, because we are interested in the
improvement with respect to the original (simulated) measurement signals, we calculate the
ratios 𝜌insp = MAEmeas,inspMAEbss,insp and 𝜌exp = MAEmeas,expMAEbss,exp
of the MAEs optimized according to eq. (4.19), where MAEmeas,insp and MAEmeas,exp are
calculated using the original EMG measurement signals (instead of the separated source
signals). If 𝜌insp > 1 or 𝜌exp > 1, an improvement has been achieved by the BSS procedure.

4.5 Results
To assess the effect of different noise levels and realizations on the performance of the BSS
procedure, thirteen different noise scales 𝑐𝜈 and four different cardiac component
16This is, of course, true at least to some degree in any real measurement.
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Figure 4.7 – An exemplary simulated multichannel respiratory surface EMGmeasurement.
Each signal consists of three components: a surface EMG component simulated according
to the model described in section 4.2.1, a cardiac component simulated according to the
model described in section 4.2.2, and a Gaussian white noise component. The first two
components are simulated using the parametrization and electrode placement described
in section 4.2.3. For the shown example, we have 𝑐ECG = 1 and a measurement noise SNR
of 4 dB.

scales 𝑐ECG were tested, and for each combination of scales, the average BSS performance
over ten independent realizations was calculated. Thus, 520 test cases were simulated and
analyzed in total. Figure 4.7 shows an exemplary simulated dataset, and fig. 4.8 the
corresponding, separated signals. Figure 4.9 shows an analysis of the separation
performance in the different noise settings, using the performance measures defined in
section 4.4. Our BSS algorithm achieves an improvement with respect to the raw
measurement signals (𝜌insp > 1 and 𝜌exp > 1) in all settings and realizations. Especially at𝑐ECG = 1 (see fig. 4.7 for an example), very high degrees of improvement (median 𝜌insp > 4,
median 𝜌exp > 2) can be observed. There is, however, a high degree of variability between
noise realizations regarding the achieved separation success, as can be observed from the
large min–max range in fig. 4.9. Moreover, the separation performance declines
significantly with increasing cardiac component levels, although these are still within the
physiologically observed range.
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Figure 4.8 – Source signals identifiedby applying algorithm5 to the simulatedmeasurement
signals shown in fig. 4.7. In this example, source signals 𝑠1 and 𝑠3 captured inspiratory and
expiratory activity best, respectively. Separation performance is quantified for this example
asMAEmeas, insp∕MAEbss, insp = 4.42 andMAEmeas, exp∕MAEbss, exp = 1.33.
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Figure 4.9 – The ratios 𝜌insp = MAEmeas, insp∕MAEbss, insp (top row) and 𝜌insp =MAEmeas, exp∕MAEbss, exp (bottom row) for different measurement noise SNRs and cardiac
component scales 𝑐ECG, averaged over ten noise realizations each. Lines represent median
values across noise realizations, error bars represent the min–max range. See section 4.4 for
more details on these performance measures.
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Chapter 4 Modeling and blind source separation of respiratory surface EMG

4.6 Discussion & outlook
To conclude this chapter, we will now proceed to discuss the merits and drawbacks of the
selected approaches for surface EMG modeling and simulation and for separating the
activity of different muscles in such measurements. Moreover, possible avenues for future
improvements will be discussed.

4.6.1 Realistic modeling of respiratory surface EMGmeasurements
The model proposed by Petersen and Rostalski [78] and described in section 4.2
incorporates much of current physiological knowledge. Previous modeling efforts were
often focused on specific components of electrophysiology, whereas an integration of the
many different strands of research into a single, comprehensive model was missing. Here,
such an integration has been achieved while also proposing new models for many
sub-components. Besides the integration of many different model components into a single,
comprehensive model, important contributions include

• a novel, flexible model of MU rate coding and recruitment,

• the incorporation of the stochastic dependency of many different MU and fiber
properties on MU and fiber size, i.e., a comprehensive and realistic model of the size
principle,

• the modeling of these relationships as stochastic and continuously distributed (as
opposed to deterministic and clustered into distinct classes),

• deliberate joint modeling of the electrical and mechanical properties of muscle fibers
to ensure a realistic EMG-force relationship,

• an analysis of the nonlinear relationship between muscle excitation and the generated
muscle force, and the ways in which this influences the modeled rate coding and
recruitment behavior, and

• a derivation of an alternative formulation and several important properties of a
previously proposed model of intracellular action potential propagation.

The result is a simulation software that enables the highly configurable generation of realistic
surface EMG and force measurements. The simulated signals have already been used for the
validation of signal processing algorithms and the derivation of new, reduced-order models
of physiology [73, 77]. The simulation software is freely and openly accessible at https:
//github.com/ime-luebeck/semgsim [76].
Although the model already incorporates many relevant aspects of physiology, it could, of

course, be further extended. The volume conductionmodel of Farina andMerletti [32] (which
is used as part of the proposed model) is quite limited in its capability to represent realistic
geometries. This could be replaced by a more complex geometrical model based on the finite
element method (FEM), several of which have been proposed in the literature [8, 57, 58, 63,
92, 96, 97]. Regarding the distribution of MUs within the muscle cross-section, strategies
accounting for regionalized MU placement have been proposed [85] and could be employed
within the present modeling framework. Effects due tomuscle fatigue are also currently not
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4.6 Discussion & outlook

modeled, a drawback that could be alleviated by incorporating the model proposed by Potvin
and Fuglevand [82]. To accurately model dynamical contractions, a number of extensions to
the current model would be necessary. In order to correctly model the geometry-dependent
MUAP shapes, the volume conduction model must be equipped to represent a time-varying
geometry. To this end, an efficient discretization-based approach such as the one proposed
by Glaser et al. [39] could be pursued. Moreover, as the muscle lengthens and shortens, its
force-producing capabilities change. To describe this, a simple Hill-type model of the force-
length and force-velocity relationships of the muscle might be employed [101]. Depending
on the target application of themodel, it might also be desirable to integrate themodel within
a larger biomechanical model, such as the CEINMSmodel [79, 91]. As an alternative avenue
for further integration, a combination with models of physiological force control might be
pursued [27, 98]. In the present model, the neural muscle activation signal has to be defined
by the user, but this could, of course, also be the result of another physiological model. A
realistic model of physiological force control would necessarily introduce a feedback loop
in the simulation model because the neural muscle activation depends on the past force
generation. Finally, more realistic models of cardiac electrophysiology could, of course, be
employed as well, examples of which abound in the literature [56, 69].

In an orthogonal line of research, it appears promising to investigate approximation
schemes for obtaining similarly realistic simulated signals at significantly reduced
computational effort. This is not a trivial endeavor, however. The currently significant
computation requirements are a consequence of the necessity to compute single-fiber
action potentials (SFAPs) for tens of thousands of muscle fibers—each necessitating the
approximate evaluation of a double integral, see Eqs. (12) and (23) in Farina and Merletti
[32]—and state-dependent impulse train signals for hundreds of MUs. Owing to the
complexity of the system under consideration— impulse trains governed by partially
stochastic and partially deterministic processes, action potential generation, propagation
along the fibers and extinction, as well as diffusion throughout the surrounding tissue
layers— the ideal point of attack for an approximation scheme (that does not overly
sacrifice model realism) is not obvious. It is obvious, however, that simple colored-noise
models [95] do not precisely capture many of the biological system’s properties. (One
obvious limitation of such simple models is that they cannot describe the recurring MUAPs
of close-by MUs.) Mean-field modeling [3, 99] might represent one possible avenue to
address this challenge. These models describe (probabilistically) the stochastic signals
resulting from an infinite number of interactive neurons that fire in a partially coupled and
partially stochastic fashion. They are popular for the modeling and analysis of EEG
signals [3, 99] but have, to the author’s knowledge, not been applied to the modeling of
EMG signals. Alternatively, model order reduction approaches could be investigated. It is
well known [8] that a small number of MUs have a disproportionately large effect on the
surface EMG signal measured at a particular electrode location, whereas most other MUs
are effectively irrelevant or only cause background noise, which could likely be described
reasonably well using a colored noise model. Thus, an attractive approach might be to
approximate the signal measured at a particular electrode using only a strongly reduced
number of MUs close to that electrode, superposed by some kind of colored background
noise representing the activity of the remaining, further remote MUs. Many questions
remain to be answered, however, such as the optimal number and location of MUs to
consider (and computationally efficient ways to determine these— that is, without first
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Chapter 4 Modeling and blind source separation of respiratory surface EMG

simulating the complete set-up and then reducing the model afterward) as well as the
appropriate type of background noise. Finally, and maybe the least invasively in terms of
deviating from the proposed model: whereas in the current model, all single-fiber action
potentials (SFAPs) are simulated individually and then superimposed to obtain a MUAP,
this superposition could likely be approximated well using just a few SFAPs (and, possibly,
some further smoothing operation). Seeing that there are tens of thousands of fibers in a
simulated muscle but at most a few hundred MUs, this could already serve to greatly reduce
the computational effort required to calculate realistic MUAPs.

4.6.2 Source separation for surface respiratory EMGmeasurements
The source separation problem for surface respiratory EMG measurements has high
practical relevance. The increasingly attractive prospects of using respiratory sEMG
measurements for clinical monitoring induce demand for methods to robustly clean
measurements from crosstalk, cardiac interference, and various other disturbances. For
developing such algorithms, proper means of validation are crucial. In this chapter (and in
our previous publications on the subject [12, 75, 77, 78] on which this chapter is based), a
novel simulation-based method for the numerical quantification of signal separation
success in the respiratory setting has been proposed. Moreover, a convolutive BSS algorithm
has been derived17 from the general TRINICON framework, adapted to the specific
separation problem at hand. The proposed algorithm is ambitiously designed to solve
multiple hard problems at once—suppressing the effect of cardiac interference, removing
crosstalk from other muscles, and separating between inspiratory and expiratory muscle
activity, all while taking information from only a few available measurement channels into
account. Its performance has been quantified using the described validation method.
While the proposed algorithm performs reasonably well in the simulated test cases, it

appears likely that even more successful algorithms can be designed. Firstly, and possibly
most importantly, notice that algorithm 5 does not exploit any application-specific
information. The algorithm is completely general, exploiting only the basic statistical
properties of non-Gaussianity, non-whiteness, and non-stationarity. It appears probable
that incorporating further knowledge about the specific problem at hand might serve to
increase algorithm performance. This might include information such as the expected
quasi-periodicity of the cardiac component and the envelopes of the respiratory
components, the frequency bands in which we expect the different components to be active,
or phases during which we expect particular sources to be active or passive. The latter
information might be derived from pneumatic measurements such as airflow or current
lung volume. Utilizing such additional sources of information for improving separation
success represents a shift from fully blind source separation to semi-blind source separation
methods [5]. As an example falling into this class, Roussel et al. [87] have proposed a source
separation method that exploits the cyclo-stationarity of intramuscular EMG signals.
Recently, Buchner et al. [11] have presented an extended (Bayesian) version of the already
very general TRINICON framework, allowing for the incorporation of both probabilistic
and deterministic prior knowledge about the source signals and the mixing system. This
extended framework also encompasses the tracking of time-varying systems. (Here, we
assumed that the mixing system was static.) Using this extended framework for semi-blind
17As was mentioned earlier, the derivation of algorithm 5 is due to H. Buchner, see Buchner et al. [12].
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source separation to derive a more problem-specific algorithm represents an attractive
avenue for future research.
Secondly, as was discussed in more detail in section 4.3, the employed mixing model is

problematic: while mixing is in fact convolutive, there are in reality many more sources
(motor units) than sensors (sEMG electrodes) in our setup.18 This renders the separation
problem strongly underdetermined. An obvious first option to solve this problem would be
the use of an algorithm for the underdetermined BSS case. This was not further examined
here; algorithm 5 is not directly applicable to the underdetermined case and would need
adaptation first. Another option to resolve this challenge is to use a dedicated algorithm
for removing cardiac interference from all measurement channels (this is the subject of the
following chapter). Doing so significantly simplifies the subsequent task of recognizing and
removing crosstalk and other disturbances in the cleaned EMG signal. Importantly, once the
cardiac component has been removed bymeans of a preprocessing step, a convolutive source
separation model is no longer strictly necessary. One may then use standard envelope-based
separation techniques like non-negative matrix factorization (NMF) [55], a standard method
for performing activity separation at themuscle group level (except that in other applications,
the cardiac interference problem is much less pronounced), as was discussed in section 4.1.2.
The following chapter is wholly devoted to the topic of cardiac interference removal.
Finally, as a completely different alternative, deep learning-based methods such as those

recently described by Wen et al. [100] could be exploited for the separation task. As these
methods are rather new, their prospects for the present application are currently unclear. One
significant challenge will likely concern the construction of an informative and sufficiently
large and diverse training dataset. To this end, synthetic data such as those generated by the
herein proposed simulation model may play a crucial role [70].
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Chapter 5

Separating cardiac and
respiratory muscle activity
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Figure 5.1 –A short excerpt from a respiratory EMGmeasurement, raw except for powerline
interference removal (left) and cleaned from cardiac artifacts using the newly proposed
probabilistic adaptive template subtraction (PATS) algorithm (right). The four bursts of
activity in the right diagram represent respiratorymuscle activity. Due to the large amplitude
of the cardiac artifacts, respiratory activity is imperceptible in the raw signal. (Note the
different scales of the two diagrams.)
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5.1 Problem definition & state of the art

Cardiac artifacts represent a significant source of disturbances in respiratory
surface EMG measurements. Due to the strength of the electrical field generated by

the cardiac muscle and its close vicinity to the recording electrode positions, the measured
signal usually contains cardiac artifacts that are orders of magnitude larger than the
respiratory signal component. (Figure 5.1 shows an example.) The exceedingly small
signal-to-noise ratio (SNR) distinguishes this separation task from others in, e.g., limb EMG
measurements or EEG measurements, where the cardiac component is significantly smaller
due to the increased distance from the heart [43]. This low SNR further exacerbates the
separation task’s difficulty, as even a small relative error in identifying the cardiac artifact
results in prohibitively large relative errors in the cleaned respiratory EMG signal. Whereas
the previous chapter examined a novel algorithm for identifying multiple physiological
source signals from multiple sEMG mixture measurements, the present chapter will treat a
single-channel separation problem: the separation of respiratory muscle activity and
cardiac activity in single-channel surface electromyographic measurements of the
respiratory muscles. Compared to the blind source separation (BSS) problem considered in
the previous chapter, the present separation problem is underdetermined, since there are
more sources to be identified (two) than measurements are available (one)— therefore, the
separation procedure can only be successful if it exploits some amount of prior knowledge
about the differing properties of cardiac and respiratory muscle activity. Furthermore,
algorithm development is impeded by the lack of a reference signal that can be used for
validation, just like in the previous chapter: there is no alternative way to measure the
target signal without cardiac interference, and hence, the true result is always unknown.
The chapter begins with a definition of the problem under consideration and a

comprehensive overview of the current state of the art (section 5.1), concerning both
algorithms for removing cardiac artifacts from single-channel respiratory surface EMG
measurement, as well as means for quantifying the quality of the resulting, cleaned signals
despite the lack of a reference signal. Section 5.2 then proceeds to introduce a new
algorithm based on model-based signal processing techniques, incorporating available
domain knowledge while simultaneously retaining enough flexibility to treat real-world
signals robustly. The following section 5.3 describes a comprehensive framework for
validating cardiac artifact removal algorithms, and section 5.4, using this framework,
provides an exhaustive comparative evaluation of many such algorithms (including the
newly proposed one). Finally, a brief discussion and outlook (section 5.5) conclude the
chapter.1

5.1 Problem definition & state of the art
This section commences with a definition of the exact separation problem under
consideration (section 5.1.1). We will then proceed to review the current start of the art
regarding algorithms for separating cardiac and respiratory muscle activity (section 5.1.2)
1An earlier version of the algorithm proposed in section 5.2 has been the subject of the Master’s thesis of
Seemann [67], whichwas conductedunder the supervision of the author. The validation frameworkdiscussed
in section 5.3 has been the subject of previous journal and conference publications (co-)authored by the
author [25, 26, 52], as well as the Bachelor’s thesis of Sauer [64], also conducted under the supervision of the
author. A patent application concerning an artifact removal method related to the PATS algorithm has been
filed by a group of inventors including the author [31].
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Chapter 5 Separating cardiac and respiratory muscle activity

and methods for quantifying the performance of such algorithms (section 5.1.3).

5.1.1 Problem definition

The specific problem of interest in this chapter is the removal of a cardiac signal
component EMGcardiac from a single-channel surface EMG measurement EMGmeas of the
respiratory muscles while minimizing changes to the characteristics of the respiratory
signal component. Examples of possible input and output signals of such a removal
algorithm are shown in fig. 5.1. Concerning typical recording sites of interest in this chapter,
see fig. 3.13, which shows the electrode positions used in our validation study [52],
discussed at more lengths in section 5.3.1.

5.1.2 Algorithms for separating cardiac and respiratory muscle activity

The simplest proposed method for separating cardiac and respiratory muscle activity is the
use of a simple high-pass filter [56]. This method has been used in a large number of
applications, and it does serve to reduce the impact of cardiac artifacts significantly. In
respiratory EMG measurements, however, there is significant frequency overlap between
cardiac and respiratory signal components [7, 52], and hence, a simple high-pass filter on its
own cannot completely solve the problem without also significantly distorting the EMG
signal [7, 52].2 Taking one additional piece of information into account to improve
separability, several variations of adaptive noise cancellation (ANC) algorithms have been
proposed [7, 18, 35, 41, 65, 66, 72, 73, 75], which employ a heartbeat impulse signal as a
noise reference input. The problem with this class of algorithms is that they cannot cope
with varying heartbeat intervals or varying beat morphology; consequently, they have not
performed favorably in performance comparisons [60].
Similar to the ANC approaches discussed above, the template subtraction algorithm for

removing cardiac interference from electrophysiological measurements [11, 12, 38, 46] is
also based on the insight that most heartbeats (of the same subject, in the same recording
session, given the same recording condition) have very similar waveforms. Cardiac activity
can thus be separated from the remaining signal components by simply averaging over all
or a moving array of heartbeats, thereby obtaining an average heartbeat template, and then
subtracting this heartbeat template from each successive detected beat in the signal.
Refinements can be achieved by fitting the calculated template in some way to each
particular observed beat (this is an important difference to ANC-based approaches). The
difference between the original measurement signal and the (fitted) template signal is then
supposed to be the EMG component without the cardiac component. Because cardiac
activity dominates much of human physiology, template subtraction algorithms have been
proposed for removing cardiac components in many physiological measurement
methodologies, not just for electromyographic measurements [26, 27]. Methodologically,
the template subtraction algorithm exploits the periodicity of cardiac activity while making
no assumptions at all about the waveform or frequency spectrum of the remaining signal
2One might ask why there should be a more significant frequency overlap in respiratory applications than in
other EMG applications. The reason lies in the distance of the recording site to the heart: biological tissue
that separates the electrode from the field-generating muscle acts as a (spatial) low-pass filter [19, 49, 51, 54],
thereby confining the cardiac component to a lower frequency band in, e.g., limb applications.

High-Pass
Filtering

Adaptive Noise
Cancellation

Template
Subtraction

128



5.1 Problem definition & state of the art

components (including electromyographic activity), other than that it not be periodic with
the heart rate. In comparison to model-based methods (described below), this represents an
advantage: arbitrarily rugged and irregular heartbeat waveforms can be represented exactly
as long as they stay constant, i.e., as long as the cardiac component is periodic. Thus,
despite its rather simplistic, engineered appearance, the template subtraction algorithm
could even be called nonparametric.
In its most basic and form,3 the template subtraction algorithm is equivalent to using an

adaptive noise cancellation (ANC) algorithm, with the R peak location as the noise
input [26]. Another statistical signal processing perspective on the classical template
subtraction algorithm has been proposed by Vullings et al. [76]. Denoting the signal
component corresponding to cardiac beat 𝑘 by 𝜃𝑘 ∈ ℝ𝓁, where 𝓁 is a standard heart beat
length, the assumption of quasi-periodicity can also be represented as𝜃𝑘 = 𝜃𝑘−1 + 𝜂𝑘, (5.1)

where 𝜂𝑘 ∼𝒩(0,Σ𝜂) represents the (stochastic) changes in beat shape between beats 𝑘 − 1
and 𝑘. Furthermore assuming noisy measurements𝑦𝑘 = 𝜃𝑘 + 𝜈𝑘 (5.2)

with 𝜈𝑘 ∼ 𝒩(0,Σ𝜈), a simple linear Kalman filter or smoother can be used to estimate the
shape of each cardiac beat. If Σ𝜂 and Σ𝜈 are both diagonal matrices, the 𝓁 state estimation
problems for the components of 𝜃𝑘 are completely decoupled and can be solved very
efficiently using 𝓁 1-D Kalman filters or smoothers (instead of a single 𝓁-D Kalman filter or
smoother)— this is a consequence of the model, i.e., template subtraction, not making any
assumptions about the waveform of a cardiac beat. If a smoother is used and Σ𝜂 = 0, this
method coincides exactly with basic (non-moving, non-fitted) template subtraction: it
identifies a constant cardiac template that is used for each heartbeat. Note that everything
except the cardiac component is supposed to be captured by 𝜈𝑘, including in particular the
electromyographic component of interest and any measurement noise. Equations (5.1)
and (5.2) mathematically explicate three strong (and questionable) assumptions the
template subtraction algorithm is based on:

1. differences between the waveforms of subsequent heartbeats are completely stochastic,

2. there is no correlation between the changes to subsequent samples within a heartbeat,
compared to the previous heartbeat, and

3. all remaining (non-cardiac) components of the signal can be described as Gaussian
white noise.

Section 5.2 will examine ways to relax these assumptions, yielding an improved probabilistic
adaptive template subtraction (PATS) algorithm.
While algorithms of the template subtraction family estimate cardiac beat morphology in

a nonparametric fashion, there is also a large class of (nonlinear) filtering and smoothing
algorithms for cardiac artifact removal based on parametric heartbeat models. In an
3In this context, basic means that no fitting of the identified template to each individual observed beat is
performed.
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Chapter 5 Separating cardiac and respiratory muscle activity

influential publication, McSharry et al. [44] proposed a simple yet flexible dynamical model
of cardiac beat morphology, which describes a cardiac signal as a weighted sum of
Gaussians. While formulated in continuous-time by McSharry et al., a discrete-time
formulation of the same model has been proposed by Sameni et al. [60]:𝜑𝑘 = (𝜑𝑘−1 + ∆𝑡 𝜔𝑘) mod 2𝜋𝑧𝑘 = 𝑧𝑘−1 − ∆𝑡 𝑚∑

𝑗=1
𝑎𝑗𝜔𝑘𝑏2𝑗 𝜑𝑗 exp ⎛⎜⎝− 𝜑2𝑗2𝑏2𝑗 ⎞⎟⎠ + 𝜂𝑘,

with 𝑧𝑘 denoting the cardiac signal, 𝜑𝑘 the current phase, 𝜑𝑗 the phase location of cardiac
peak 𝑗 (with 1 ≤ 𝑗 ≤ 𝑚), ∆𝑡 the sampling time, 𝜔𝑘 the heart rate and 𝑎 ∈ ℝ𝑚 and 𝑏 ∈ ℝ𝑚
the (amplitude and width) parameters of the Gaussian waves representing the different
cardiac peaks. For the process noise, 𝜂𝑘 ∼𝒩(0,Σ𝜂) is assumed. Various nonlinear filtering
and smoothing schemes have been proposed that estimate the time-varying model states
and parameters 𝜑𝑘, 𝑧𝑘, 𝜔𝑘, 𝑎𝑘, 𝑏𝑘 and 𝜑𝑘, and then use 𝑧𝑘 as an estimate of the (denoised)
cardiac signal component [6, 58–60]. As with all Kalman filtering and smoothing methods,
the quality of the resulting estimates depends chiefly on the tuning of the noise covariance
matrices. While these algorithms can be tuned to perform very well on individual datasets,
in our recent performance comparison, we found it challenging to find an automatic noise
covariance tuning method that achieves high performance across all subjects and
recordings [52]. There are, of course, many automatic tuning methods known in the
general filtering and smoothing literature, but finding a specific method that works well for
this problem currently appears to be an open problem.
Another large group of algorithms for separating cardiac and respiratory components in

electrophysiological measurements is based on decomposing the original mixture signal into
different components and then solving the separation problem in the resulting,
higher-dimensional signal space. The main challenges for this class of algorithms are,
firstly, finding an appropriate basis for the decomposition and, secondly, conceiving a
robust method to reject cardiac artifacts in the decomposed space. Most of the well-known
decomposition methods have been used for this purpose, including the singular value
decomposition (SVD) [43, 48], the empirical mode decomposition (EMD) [25, 34], and the
wavelet decomposition [2, 3, 21, 25, 34, 52, 71, 74]. For the rejection of cardiac artifacts in
the decomposed, higher-dimensional space, simple threshold-based peak rejection
methods [25, 52], ICA [3], and simple rejection of the first or last 𝑛 components [48, 52]
have been employed. (Of course, in the multi-channel case, BSS methods can also be
employed directly, i.e., without prior signal decomposition [42, 80]. Here, we focus on the
single-channel case, however.) Recently, we have proposed two particularly robust and
efficient algorithms using the stationary wavelet transform (SWT) and the empirical mode
decomposition (EMD) [25, 52].
It should be noted that there is, of course, a huge body of literature on ECG denoising

methods, which includes methods for removing muscle artifacts from ECG recordings. This
might, at first glance, appear to be the same problem as removing cardiac inference from
electromyographic measurements. There is an important difference between these two
settings, however: the accuracy requirements posed on separation algorithms differ wildly
due to the inverted SNRs—cardiac and muscular components play inverted roles in these
two separation tasks. Nevertheless, algorithms are often applicable to both problems, and
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many of the algorithms described above have first been proposed within the context of ECG
denoising [30, 60, 76, 79]. The estimation of ECG-derived respiration (EDR) [15] is another
closely related field that, however, solves a much simpler problem: the identification of
some kind of respiratory information in an ECG signal. This is a much less challenging task
than recovering the exact shape of an interfered respiratory surface EMG signal.
Interestingly, despite the recent surge of biomedical applications of machine learning, the

author is unaware of any study directly attempting to solve the cardiac artifact removal
problem using machine learning techniques. There are a few closely related studies,
however. Bockelmann et al. [13] use deep learning to predict the envelope of an invasively
measured diaphragm EMG from raw surface EMG measurements— thereby implicitly
solving the cardiac artifact removal problem. Recently, Zhang et al. [82] have applied a deep
convolutional neural network for removing EMG artifacts from EEG recordings, a closely
related problem. Additionally, several groups have proposed the use of current deep
learning techniques for ECG signal denoising [9, 10, 28]. The application of machine
learning techniques to the cardiac artifact removal problem might represent an attractive
avenue for future research, as will be discussed in section 5.5.
To conclude this section, fig. 5.2 shows a schematic overview of the different families of

cardiac artifact removal algorithms discussed above— including the newly proposed PATS
algorithm that will be described in section 5.2.

5.1.3 Quantifying separation success

As was already discussed in the previous chapter, quantifying the performance of biological
signal separation algorithms represents a difficult challenge. In virtually all practically
relevant settings, the signal components to be separated cannot be measured in isolation
without also changing their properties, and thus, simple (pointwise) comparison of the
separated components with a true reference signal is usually impossible in vivo. This is also
the case for the present problem of separating cardiac and myographic components in
electrophysiological surface measurements.
Three broad avenues for performing validation remain. Firstly, physiological modeling

can be used to simulate each of the individual components realistically and then obtain
synthetic measurements from their superposition (e.g., [18]). In this setting, the original
signal components are known, and the results of a separation procedure can then be
compared to them. This is the approach that was pursued in the previous chapter and
Petersen et al. [50] for the verification of a blind source separation method for respiratory
sEMG measurements. Secondly, in a similar yet slightly different approach, synthetic
signals can be obtained by superposing physiological measurements that are similar to the
signal components of interest but can be measured in isolation. Regarding the particular
problem at hand, various groups have superposed different ECG lead measurements
(representing the cardiac signal component) with EMG measurements obtained from
muscles that are not subject to strong cardiac contamination [1, 20, 52, 60, 64, 80]. As in the
previous approach, the true signal components are known, and the separated components
can be validated against them. Thirdly and lastly, one can simply content with the fact that
pointwise comparisons to a true reference are not feasible and instead consider alternative
(application-specific) measures of separation success, such as periodicity with the heart rate
(which can be detected easily in the original, unprocessed signal) [52, 59] or the ratio of
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Figure 5.2 – A schematic overview and classification of algorithms for removing cardiac
artifacts from single-channel surface EMG measurements. A note on the distinction
between individual data-driven methods andmachine-learning methods: the former operate
on the data of a single recording session, whereas the latter extract information from a
large number of datasets. Probabilistic adaptive template subtraction (PATS) is discussed
in section 5.2. Section 5.4 presents a detailed performance comparison of many of these
methods. Figure modified and extended with permission from Petersen et al. [52].

signal power during cardiac QRS complexes and signal power during the remainder of the
signal [52]. In this chapter, the second and third approaches will be pursued. While both
approaches individually have their limitations (synthetic signals may always differ in their
characteristics from real measurements, and any empirical measure of separation success
may fail to detect a certain type of failure [52]), their combination paints a comprehensive
picture of the relative performance of different methods under different circumstances.
Previous performance comparisons of algorithms for cardiac artifact removal have been

limited to simulated signals [18], data from a single subject [20, 80, 83], or synthetic signals
obtained from the superposition of multiple measurement signals (the second approach
discussed above) [1, 3, 20, 42, 60, 80, 81]. To the author’s knowledge, no previous
performance comparison has considered real respiratory sEMG measurements from
multiple subjects, except for Slim and Raoof [71], who only considered a single measure of
separation success—which, as we will see below, is not sufficient to reliably assess
separation performance. Finally, most previous performance analyses compare just a small
number of algorithms and do not consider all relevant candidate algorithms. The most
comprehensive performance comparison in this regard has recently been provided by Xu et
al. [81] who compare six different algorithms. However, the authors only consider synthetic
data obtained from the superposition of ECG leads and biceps EMG measurements, and
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only a single SNR level, which does not capture the wide range of SNRs observed in
respiratory sEMG measurements in practice. To summarize, a comprehensive comparative
performance evaluation of the most promising proposed algorithms for cardiac artifact
removal from respiratory surface EMG measurements has been missing until the author’s
recent publication Petersen et al. [52].

5.2 Probabilistic adaptive template subtraction
In section 5.1.2, the probabilistic formulation of template subtraction given by Vullings et
al. [76] was described: Denoting the signal component corresponding to cardiac beat 𝑘 by𝜃𝑘 ∈ ℝ𝓁, where 𝓁 is a standard heart beat length, Vullings et al. [76] propose the random
walk model 𝜃𝑘 = 𝜃𝑘−1 + 𝜂𝑘, (5.1)

where 𝜂𝑘 ∼𝒩(0,Σ𝜂) represents the (stochastic) changes in beat shape between beats 𝑘 − 1
and 𝑘. Furthermore, they assume noisy measurements𝑦𝑘 = 𝜃𝑘 + 𝜈𝑘. (5.2)

As discussed in section 5.1.2, this model is based on three simplifying assumptions:

1. differences between the waveforms of subsequent heartbeats are purely random,

2. there is no correlation between the changes (compared to the previous heartbeat) to
subsequent samples within a heartbeat, and

3. all remaining (non-cardiac) components of the signal can be described as Gaussian
white noise.

None of the three assumptions is typically fulfilled in real measurements. Figure 5.1 (left)
shows a clear example of non-stochastic heartbeat waveform evolution: the waveform
changes significantly as a function of lung volume due to changes in thoracic geometry [36].
These respiration-related waveform changes, among many other predictable variations such
as Mayor waves and other systematic variations [70], clearly violate the first two
assumptions stated above. Moreover, surface EMG signals are well known to attain a
colored spectrum, as shown in fig. 3.8, which violates the third assumption. For these
reasons, an enhanced model and estimation procedure will be proposed in the following,
which is derived from the method of Vullings et al. [76] while relaxing the first and last of
the three assumptions.4 A proposal for also relaxing the second assumption is made in
section 5.2.6.
The newly proposed algorithm can be very roughly summarized as follows: First, all

heartbeats are identified and aligned. To identify the statistical properties of the
contaminated EMG signal, signal snippets without cardiac contamination are analyzed
using a simple gating approach, i.e., simply rejecting all samples in the vicinity of a detected
heartbeat. An ensemble of independent state-space models is then fit to the time series
describing the evolution of individual samples within each heartbeat over the course of the
4As was mentioned previously, a preliminary version of this algorithm was the subject of the Master’s thesis of
Seemann [67], which was conducted under the supervision of the author.
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full recording, i.e., one model that describes the temporal evolution of the first sample
within each heartbeat over time, another model for the evolution of the second sample
within each heartbeat over time, and so forth. The identified models are then used for
smoothing the time series describing the evolution of the different samples, yielding a
denoised version of the cardiac contamination. Finally, the desired cleaned EMG signal is
then obtained as the difference between the original signal and this estimate of the cardiac
contamination. Algorithm 6 summarizes the new algorithm and may assist the reader in
following along the subsequent sections.

5.2.1 Preliminary signal processing
Before discussing the more specific parts of the proposed new method, this section will lay
out a number of required preprocessing steps and introduce relevant signals and notation.
First, a fourth-order zero-phase 50Hz bandstop Butterworth filter is used to remove
powerline interference. Using the filtered signal, R peak locations are then detected using a
modified5 Pan-Tompkins peak detection algorithm, yielding a vector 𝑟 ∈ ℝ𝑁beats of R peak
indices. Once R peaks are detected, a vector 𝑐 ∈ ℝ𝑁beats+1 containing the indices of center
points between R peaks is also defined, and the beat template length 𝓁 (in samples) is
selected as 1.2 times the average heartbeat length throughout the whole signal. To remove
baseline wander and slightly simplify the subsequent cardiac artifact removal task [52], the
raw signal is then filtered using a 12th-order zero-phase Butterworth high-pass filter with a
cut-off frequency of 20Hz, yielding the signal EMGpreFilt. Moreover, for the purposes of
analyzing the characteristics of the EMG component of the measured signal, it will often be
useful to consider only those phases of the signal which likely do not contain cardiac
activity. The QRS segment is usually several dozenms in length, but this is, of course, not
the only phase of cardiac activity. For these reasons, we define a mask “¬ cardiac activity”
for a signal EMG asEMG¬ cardiac activity = (

Filter(EMG, 𝐻>30Hz,ZP))¬ close to QRS∧¬ outlier (5.3)

where “¬ close to QRS” excludes all samples within a [−150ms, 150ms] window around
each detected R peak, ¬ outlier excludes extreme outliers (defined as having an amplitude
above the 0.999 quantile of the signal’s amplitude), and𝐻>30Hz,ZP is a zero-phase high-pass
filter with a cut-off frequency of 30Hz.
Next, a whitened representation of the signal is computed, as discussed in section 3.1.2.

Our approach differs from the usual whitening approach, however: normally, the
whitening filter is determined as the inverse of a spectral estimate of the whole signal. Here,
however, the whitening filter will be identified using only segments without cardiac activity.
We make this choice in order to ensure that everything except for the cardiac signal
component can be described as uncorrelated noise, which will become relevant in the
following section. A sixth-order autoregressive model 𝐻burg is fit to EMGpreFilt¬ cardiac activity,
and EMGpreFilt is then filtered with the inverse of that autoregressive model, yielding the
whitened signal EMGwhite. Spectral estimation on signals with gaps is a current field of
5After a basic run of the classical Pan-Tompkins algorithm [47], an additional step is performed during which
each detected peak is re-aligned by maximizing correlation with the average peak over the whole dataset. We
found that this increases robustness in the case of R peaks with multiple local maxima or minima.
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5.2 Probabilistic adaptive template subtraction

Algorithm 6: Probabilistic Adaptive Template Subtraction
1 Function PATS

(EMGmeas, 𝑢)
Input :A raw, single-channel EMG measurement EMGmeas ∈ ℝ𝑁𝑆

with strong cardiac contamination, and an input signal𝑢 ∈ ℝ𝑁beats×𝑁𝑢 which contains additional information about
the shape of each beat.

Output :A cleaned signal EMGcleaned ∈ ℝ𝑁𝑆 in which most cardiac
interference has been removed, with only EMG activity
remaining.

2 begin
3 EMGpreFilt = Filter(EMGmeas, 𝐻>20Hz)
4 𝑟 = FindPeakIdces(EMGpreFilt), 𝑟 ∈ ℝ𝑁beats

5 𝑐 = FindCenterBetweenPeakIdces(𝑟), 𝑐 ∈ ℝ𝑁beats+1
6 𝓁 = RoundOdd(1.2 ⋅mean(diff(𝑟))), 𝓁 ∈ ℕ Template length
7 𝑗peak = ⌈0.5 ⋅ 𝓁⌉, 𝑗peak ∈ ℕ R peak position in templates

Whiten the signal to justify the assumption of uncorrelated measurement
noise.

8 𝐻burg = PSDBurg(EMGpreFilt¬ cardiac activity)
9 EMGwhite = Filter(EMGpreFilt, 𝐻−1

burg)
10 for 𝑗 = 1 to 𝓁 do

Identify a maximum-likelihood state-space model for the time course
of the 𝑗th sample of all beats.

11 𝑦 = EMGwhite𝑐+(𝑗−𝑗peak) Vector of all 𝑗th samples
Minimize the negative log likelihood of the data. See Eqs. (5.5)–(5.8)
for the definitions of the state-space model.

12 𝜓∗ = argmin𝜓∈Ψ− log𝑝(𝑦 ∣ 𝑢,𝐴(𝜓), 𝐵(𝜓), 𝐶,Σ𝜂(𝜓), 𝜇𝜂(𝜓),Σ𝜈)
Estimate the denoised time course of the 𝑗th sample of all beats.
Use a Rauch–Tung–Striebel smoother (RTS), see algorithm 4.

13 �̂�𝑠1∶𝑁beats = RTS
(𝑦, 𝑢, 𝐴(𝜓), 𝐵(𝜓), 𝐶,Σ𝜂(𝜓), 𝜇𝜂(𝜓),Σ𝜈)

14 𝑇∶,𝑗 = �̂�𝑠1∶𝑁beats Matrix containing templates of all beats
15 end

(Specialized handling of first and last beats not shown here)
16 for 𝑖 = 1 to𝑁beats do

Row 𝑇𝑖∶ contains the estimated template of beat 𝑖.
If an RR intervals is longer or shorter than 𝓁, interpolate linearly
between adjacent beats.

17 EMGcardiac𝑐𝑖∶𝑐𝑖+1 = CreateTemplate(𝑟𝑖−1∶𝑖+1, 𝑇𝑖−1∶𝑖+1,∶)
18 end

19 EMGcleaned, white = EMGwhite − EMGcardiac

Reverse whitening to recover original spectral characteristics.
20 EMGcleaned = Filter(EMGcleaned, white, 𝐻burg)
21 end
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Chapter 5 Separating cardiac and respiratory muscle activity

research [16], especially in the field of biomedical estimation where missing data are a
frequent problem [57]. Our approach here is to treat the different segments of non-cardiac
data like individual “experiments” and perform classical multi-experiment autoregressive
model parameter identification by joint prediction error minimization across these different
experiments [40]. This method is methodologically very similar to the Burg algorithm for
segments [77] which was recently found to outperform other algorithms in ECG spectrum
analysis with gaps [57].

5.2.2 Model proposal
To relax the assumption of purely stochastic heartbeat variation, we propose to replace the
whole-beat random walk model (5.1) by a series of 𝓁 models, one per sample 𝑖 = 1,… ,𝓁
in each heartbeat. In particular, we propose to use third-order autoregressive models with
exogenous inputs, i.e.,

beat𝑘𝑖 = 𝑎1𝑖beat𝑘−1𝑖 + 𝑎2𝑖beat𝑘−2𝑖 + 𝑎3𝑖beat𝑘−3𝑖 + 𝑏𝖳1∶𝑁𝑢 ,𝑖𝑢𝑘 + 𝜂𝑘𝑖, (5.4)

where beat𝑘𝑖 denotes sample 𝑖 of the waveform beat𝑘 ∈ ℝ𝓁 of heartbeat 𝑘, 𝑢𝑘 ∈ ℝ𝑁𝑢 denotes
sample 𝑘 of an exogenous input signal 𝑢 ∈ ℝ𝑁𝑢×𝑁beats , and 𝜂𝑘𝑖 ∼𝒩(𝜇𝜂𝑖 , 𝜎2𝜂𝑖) Gaussian noise.
We gather all model parameters in a vector𝜓𝑖 = (𝑎1𝑖 𝑎2𝑖 𝑎3𝑖 𝑏1𝑖 ⋯ 𝑏𝑁𝑢𝑖 𝜇𝜂𝑖 𝜎𝜂𝑖)𝖳 ∈ ℝ𝑁𝑢+5
to be tuned. Furthermore assuming noisy measurements, we obtain a series of 𝓁 state-space
models 𝜃𝑘𝑖 = 𝐴(𝜓𝑖)𝜃𝑘−1𝑖 + 𝐵(𝜓𝑖)𝑢𝑘 + 𝜂𝑘𝑖, 𝜂𝑘𝑖 ∼𝒩(𝜇𝜂𝑖,Σ𝜂𝑖)EMGwhite𝑘𝑖 = 𝜃𝑘𝑖 + 𝜈𝑘, 𝜈𝑘𝑖 ∼𝒩(0,Σ𝜈) 𝑖 = 1,… ,𝓁 (5.5)

with model matrices

𝐴(𝜓) = ⎛⎜⎝
𝜓1 𝜓2 𝜓31 0 00 1 0 ⎞⎟⎠ 𝐵(𝜓) = ⎛⎜⎝

𝜓4 ⋯ 𝜓𝑁𝑢+30 ⋯ 00 ⋯ 0 ⎞⎟⎠ 𝐶 = (1 0 0) (5.6)

and process noise parameters

𝜇𝜂(𝜓) = ⎛⎜⎝
𝜓4+𝑁𝑢00 ⎞⎟⎠ Σ𝜂(𝜓) = ⎛⎜⎝

𝜓25+𝑁𝑢 0 00 0 00 0 0⎞⎟⎠ .
In eq. (5.5), one time step corresponds to one heartbeat, and 𝜃𝑘𝑖 ∈ ℝ3 denotes the state
vector corresponding to sample 𝑖 in beat 𝑘. The input signal 𝑢𝑘 can be any signal that
provides further information about heartbeat 𝑘’s waveform; several useful choices for 𝑢𝑘
will be discussed in section 5.2.5. By EMGwhite𝑘𝑖 , we denote the sample corresponding to
sample 𝑖 in beat 𝑘 of the whitened signal EMGwhite (see the previous section). Finally, for
the measurement noise covariance, we assumeΣ𝜈 = Var[EMGwhite¬ cardiac activity]. (5.7)
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5.2 Probabilistic adaptive template subtraction

where “¬ cardiac activity” is defined as in eq. (5.3). The usage of EMGwhite as ameasurement
signal (instead of EMGpreFilt) serves to partially satisfy the third assumption stated in the
introduction of this section: while this modification does not ensure the Gaussianity of the
measurement noise process, it does ensure its uncorrelatedness. Furthermore, EMG signals
are generally known to attain a distribution that lies between a Gaussian and a Laplacian [17,
51]— thus, the Gaussianity assumption is also not unreasonable.
Notice that, unlike some previously proposed algorithms [60], we do not stretch or shrink

heartbeats to conform with some standardized length. Instead, heartbeats are taken exactly
as they are, and simply cut off at a fixed width to the right and to the left of the detected R
peak, yielding a set of observed heartbeats of identical lengths. This approach was selected
because it was observed empirically that the length and shape of the QRS complex—which
represents the most important component of the cardiac contamination—stayed relatively
constant, regardless of the total length of the heartbeat. (See fig. 5.3, bottom right panel, for
some evidence.) Thus, stretching or compressing the heartbeat to conform with a
standardized length would significantly increase the difficulty of the separation problem
since QRS complexes would be rendered more different than they really are.

5.2.3 Estimation procedure
Given model eqs. (5.5) to (5.7), how can we identify the model parameters 𝜓𝑖 and the
states 𝜃𝑘𝑖 for all beat samples 𝑖 = 1,… ,𝓁, finally yielding an estimate of the time course of
the cardiac signal component EMGcardiac? An important observation about eqs. (5.5) to (5.7)
is that these 𝓁 models of the time courses of the different beat samples are completely
decoupled. Instead of a single, 3 ⋅ 𝓁-dimensional state-space model, one can solve 𝓁
three-dimensional estimation problems, which tremendously reduces computational effort
& memory requirements.
With this in mind, one can solve both estimation problems using the standard tools

described in chapter 2: the model parameters 𝜓𝑖 are identified using maximum likelihood
(ML) estimation as described in section 2.4, and the subsequent (as well as inner-loop) state
estimation problem is solved using a Rauch-Tung-Striebel (RTS) smoother as described in
section 2.3.1. To solve the nonlinear likelihood maximization problem (2.33), we employ
the energy recursion (2.40). A convex set of feasible values for 𝜓 is defined by

Ψ = { (𝑎1 𝑎2 𝑎3 𝑏1 … 𝑏𝑁𝑢 𝜇𝜂 𝜎𝜂)𝖳 |||||||||
−2 ≤ 𝑎𝑖 ≤ 2−0.2 ≤ 𝑏𝑖 ≤ 0.2−0.5 ≤ 𝜇𝜂 ≤ 0.50 ≤ 𝜎𝜂 ≤ 0.2 }, (5.8)

and we use the interior point algorithm provided by the Matlab fmincon command [14].6 If
desired, the computational effort required for solving the parameter optimization problem
could be significantly reduced by implementing gradient-based optimization using the
gradient expressions provided by Särkkä [61, p. 214], but this was not deemed necessary
here.
6Various solvers were tried and compared heuristically, including the mesh-adaptive direct search algorithm
NOMAD [4, 37]. The fmincon solver was found to yield equally good results at much lower computation
time.
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Chapter 5 Separating cardiac and respiratory muscle activity

5.2.4 Removal algorithm

Once the whitened signal EMGwhite, the model parameters 𝜓𝑖 and the states 𝜃𝑘𝑖 have been
obtained for all beat samples 𝑖 as described in the previous two sections, the first entries of
all state estimates 𝜃𝑘𝑖 are collated to obtain the final estimate of the cardiac signal
component EMGcardiac ∈ ℝ𝑁𝑆 (see algorithm 6 for details). This cardiac signal estimate is
then subtracted from the whitened measurement signal to obtainEMGcleaned, white = EMGwhite − EMGcardiac.
Finally, to recover the frequency characteristics of the original signal, we perform the inverse
of the whitening operation used initially and obtain the desired, cleaned signal estimateEMGcleaned = Filter(EMGcleaned, white, 𝐻burg).

5.2.5 Choice of shape information signals

So far, the discussion always assumed a suitable input signal 𝑢 ∈ ℝ𝑁beats×𝑁𝑢 to be available.
This section will discuss several suitable choices for such an input signal. The general
requirement for something to be a suitable input signal is simply that, in agreement with
the model (5.5), it should provide some information about the shape of the different beats.
Obviously, there are many choices for 𝑢 that fulfill this requirement: any signal that
correlates with changes in cardiac beat morphology is feasible. Of the many possible
choices for input features, two will be considered here:

RR interval length. A first option is to use the current RR interval length 𝑢RR,𝑘, i.e., the
distance between the current and the previous R peak: it is well known that RR
interval length is a highly predictive feature regarding ECG beat morphology [5, 33,
39]. Figure 5.3 illustrates the correlation between 𝑢RR,𝑘 and beat morphology.

SVD-based beat characterization. As a second option for an input signal, a singular
value decomposition (SVD)-based characterization of beat morphology will be
considered, as has been successfully employed in many previous cardiac signal
processing applications [29, 32, 48, 78]. To this end, a matrix𝑀QRS is constructed that
contains in each row the samples contained in a ±100ms window around each
detected R peak. Next, the first 𝑁PC principle components PCQRS,𝑖 of 𝑀QRS are
computed—as is well-known, these represent, in descending order of importance,
the most important (in terms of explaining signal variance) directions of QRS
complex shape variation. As such, the projection𝑢PC,𝑘,𝑖 ∶= 𝑀QRS,𝑘PC𝖳QRS,𝑖
of each QRS complex onto these𝑁PC principal components (the principal coordinates)
provides a nonparametric andmaximally informative characterization 𝑢PC,𝑘 ∈ ℝ𝑁PC of
beat morphology that may be used as part of the input signal 𝑢𝑘. Figure 5.3 illustrates
how 𝑢PC characterizes beat morphology.

One can, of course, also combine features and use multiple delayed versions of the same
features. Note that many other shape-varying factors could also be considered, such as lung
volume or other characteristic ECG beat features.
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Figure 5.3 – An exploration (based on one sample recording) of two features used for
characterizing cardiac beat morphology: principal coordinates and previous RR interval
length. Top row: observedQRS complexes and their first three principal components. Middle
row: scatter plot of the first two principal coordinates of each observed heartbeat (left), as
well as the averages of all QRS complexes with first/second principal components in the
respective bottom and top decile (right). Bottom row: observed distribution of RR intervals
lengths (left) and averages of all QRS complexes following an RR interval in the 1st, 5th, and10th decile. A statistical dependency between the QRS segment waveform and both features
can be observed (center right panel and bottom right panel), although the relationship with
the previous RR interval length is weak in this recording. Thus, both quantities represent
potentially useful input features for predicting QRS segment waveform. The data are from
recording 2, channel 1, of the study described in section 3.3.2, high-pass filtered with a
cut-off frequency of 20Hz.
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Chapter 5 Separating cardiac and respiratory muscle activity

5.2.6 Remarks on the proposed solution
To summarize, what are the properties of the proposed model and removal algorithm?

• The approach is adaptive to every single recording and completely unsupervised. All
free model parameters are estimated based on the single recording at hand, as
opposed to machine-learning approaches based on large labeled training datasets. No
calibration procedure of any sort is required.

• The model is nonparametric and completely unconstrained with respect to cardiac
beat morphology. Arbitrarily rugged heartbeat shapes can be represented without bias.
This is in contrast to methods based on smooth and parametric models of heartbeat
morphology.

• Predictable variations of beat morphology due to, e.g., respiratory activity or Mayer
waves, are represented by the model. These are incorporated in the model by using
the autoregressive heartbeat evolution model (5.5) and input signals such as the RR
interval length. To the author’s knowledge, none of the known approaches takes these
predictable temporal variations into account.

• Unpredictable but systematic variations of beat morphology are also controlled for by
the model. This is due to the use of the SVD-driven (nonparametric) beat
characterization. This allows the algorithm to (continuously) differentiate between
different clusters of heartbeats, independent of their time of appearance.

• The noise model is realistic. EMG signals are usually nearly normally distributed, and
by means of the specialized whitening step, it is ensured that the noise component
is—as assumed by the model (5.5)—uncorrelated. Previously proposed model-based
approaches often assumed simple and unrealistic noise models, which, as discussed
at length in section 2.1.4, can crucially affect estimation results.

• No measurements or data beyond the single-channel measurement to be denoised are
required. Moreover, the measurement need not necessarily be an electrophysiological
measurement; the approach is equally well applicable to other physiological
measurement modalities affected by cardiac interference, so long as the whitened
target signal has an amplitude distribution that is sufficiently close to a Gaussian.
(This has not been further tested or verified here, though.)

• Uncertainty quantification is directly available via the RTS smoother’s state
estimation covariance. This can be used to automatically detect regions where
removal performance might be insufficient and to inform further signal processing
steps that rely on the cleaned signal.

Of course, the proposed model is one of a myriad of conceivable models. Its features are,
however, unique among previously proposed methods, as mentioned above. While model
selection is performed with respect to the choice of the input signal in section 5.4, a more
extensive model search would likely yield an even better model structure. Note, though, that
the class of feasiblemodel structures is limited significantly by the requirement of identifying
all model parameters on a single recording. The model proposed here strikes a balance
between providing enough flexibility to faithfully represent a large class of possible signal
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waveforms on the one hand and incorporating sufficient prior knowledge to enable sample-
efficient inference on the other hand.
While the proposed approach solves many problems that other methods exhibit—as

confirmed by its good comparative performance, which will be discussed in
section 5.4—one of the unrealistic assumptions noted in the introduction remains: it is still
assumed that there is no correlation between the changes to subsequent samples within a
heartbeat compared to the previous heartbeat. Mathematically, this is reflected in the
assumption that 𝜂𝑘𝑖 in eq. (5.5) is completely independent of all other process noise
terms 𝜂𝑘𝑗, which is, of course, not realistic. The assumption can be relaxed by assuming
some model of correlation between neighboring process noise realizations 𝜂𝑘𝑖
and 𝜂𝑘𝑖+1—e.g., in the simplest case, a first-order autoregressive model—but this,
crucially, introduces coupling between all 𝓁 state and parameter estimation problems that
could so far be solved separately from one another. Thus, instead of 𝓁 separate(5 +𝑁𝑢)-dimensional maximum likelihood parameter estimation problems and 𝓁 separate3-dimensional state estimation problems, one then must solve (assuming an otherwise
identical model structure) a single 𝓁 ⋅ (5 + 𝑁𝑢)-dimensional maximum likelihood
parameter estimation problem and a single 3 ⋅ 𝓁-dimensional state estimation problem.
Using a memory-efficient implementation of gradient-based ML estimation, this is certainly
feasible— it does, however, significantly increase computational and implementation
complexity, and was therefore not pursued here. This may represent an attractive
opportunity for further research.

5.3 Validation & performance quantification
This section will describe a comprehensive framework for the validation and performance
quantification of algorithms for the removal of cardiac interference from single-channel
respiratory sEMGmeasurements.7 To briefly recapitulate, the key challenge for ameaningful
validation regards the lack of a true reference signal. Two different, complementary methods
for addressing this challenge are pursued in the following. Firstly, section 5.3.1 describes a
study in which real respiratory sEMG measurements were obtained from healthy subjects,
and cardiac artifact removal procedures are evaluated based on two empirical measures of
separation success. Secondly, section 5.3.2 describes the construction of synthetic data from
non-respiratory sEMG measurements (free of cardiographic contamination) and ECG leads
(free of myographic contamination), in which case a true reference signal is available for
the validation. Section 5.3.3 lists six algorithms that have been proposed previously in the
literature and to which the newly proposed PATS algorithm will be compared.

5.3.1 Real study data

In addition to the use of synthetic data for the validation (as described in the following
section), the algorithms were also verified using real respiratory measurement data. To this
end, study data were collected for this particular purpose in a Bachelor’s thesis conducted
under the supervision of the author, as discussed in more detail in section 3.3.2. As a brief
7This section is largely based on Petersen et al. [52]. An initial version of the validation framework described
in this section has been developed in the Bachelor’s thesis of Sauer [64] under the supervision of the author.
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summary, two respiratory surface EMG channels (electrode positions as shown in fig. 3.13)
were recorded for 15 minutes from ten healthy subjects lying supine on a bench while they
breathed through an inspiratory resistor. All signals were assessed for cardiac anomalies by a
clinical expert8; none were found except for possible sinus arrhythmia in one subject. Of the
total of 20 recordings (ten subjects, two channels each), 14 were used for further analyses;
reasons for exclusions are noted in table 3.1. All signals were preprocessed using a fourth-
order zero-phase Butterworth band-stop filter with a stop frequency of 50Hz. Furthermore,
for all algorithms except the wavelet denoising method, the signals were pre-filtered using a
zero-phase high-pass filter with a cut-off frequency of either 10Hz (for EKS2 and EKS25) or20Hz (all remaining algorithms).
As was discussed extensively already, no true reference data are available in the case of real

measurements. Hence, a validation scheme must rely on heuristic measures of separation
success. Here (as in Petersen et al. [52]), two different heuristic performance measures
are considered: the improvement in an empirical signal-to-noise ratio (SNR) from the raw
measurements to the cleaned signals, and the improvement in a periodicity measure (PM)
that quantifies the periodicity of the signal with the heart rate.
For estimating the empirical signal-to-noise ratio (SNR), we attempt to identify some signal

phases during which either only inspiratorymuscle activity and no cardiac activity is present,
or only cardiac activity and no inspiratory muscle activity. We will then use the first type of
sections to estimate the signal power, i.e., the EMG power, and the second type of sections
to estimate the noise power, i.e., the cardiac contaminant power. For the first purpose, we
re-use the “¬ cardiac activity” operator defined earlier in eq. (5.3). As a brief reminder, this
operator filters the signal with a zero-phase high-pass filter with a cut-off frequency of 30Hz
to remove any remaining baseline activity and then selects those samples of the signal that
are not within a [−80ms, 80ms] window around each detected R peak. Inspiratory activity
is detected by automatic, threshold-based inspection of the airway pressure signal, and we
estimate the (myographic) signal power asP{Filter(EMG, 𝐻>30Hz)insp∧¬ close to QRS},
where P{𝑋} = E[𝑋2] denotes the power of signal 𝑋. Similarly, the (cardiac) noise power is
estimated as P{EMG¬ insp∧close to QRS}
and we finally obtain the empirical SNR (in decibels)

SNR{EMG} = 20 ⋅ log10 P{Filter(EMG, 𝐻>30Hz)insp∧¬ close to QRS}P{EMG¬ insp∧close to QRS} . (5.9)

Using this definition, the min-max range of the SNR of EMGpreFilt (which, as a reminder, is
the raw signal preprocessed using a high-pass filter with a cut-off frequency of 20Hz) across
all datasets is −50.82 dB to −11.54 dB, with a median of −36.38 dB. This range will be used
below in section 5.3.2 to create a set of synthetic measurements with realistic SNRs. Because

8The author would like to thank N. Carbon, Department of Anesthesiology, and Operative Intensive Care
Medicine, Charité Universitätsmedizin Berlin, Germany, for assessing the study data with respect to cardiac
anomalies.
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we are interested in the improvement in SNR achieved by the different algorithms, we will
otherwise mostly concern ourselves with the difference∆SNR{EMGcleaned

} = SNR{EMGcleaned
} − SNR{EMGpreFilt

}
(5.10)

between the signal EMGpreFilt preprocessed by a 20Hz zero-phase high-pass filter, and the
cleaned signal EMGcleaned.
The second empirical measure of separation success which we will consider in the

following is the periodicity measure (PM) introduced by Sameni et al. [59]. This measure
quantifies the quasi-periodicity of a signal with respect to a second, phase-providing signal.
In the given setting, it quantifies the correlation between signal samples at identical phase
positions in successive cardiac beats: if these are well-correlated, cardiac information is still
present in the signal. If they are uncorrelated, we may assume that cardiac interference has
been largely removed. To define this measure mathematically, we first denote the temporal
distance between sample 𝑘 and its “successor” sample one heartbeat later by𝜏𝑘 = min{𝜏 ∣ Φ𝑘+𝜏 = Φ𝑘, 𝜏 > 0}, (5.11)

where Φ𝑘 denotes a phase signal which is obtained by linear interpolation from 0 to 2𝜋
between two successive detected R peaks. Then, the PM is defined as the Pearson coefficient
of correlation [59] PM = |E[𝑥𝑘𝑥𝑘+𝜏𝑘 ]||E[𝑥2𝑘]E[𝑥2𝑘+𝜏𝑘 ]| 12 . (5.12)

If PM = 1, the signal is perfectly quasi-periodic with the (potentially time-varying) heart
rate, whereas if PM = 0, there is no remaining periodicity with the heart rate. Analogously
to ∆SNR, we will mainly consider the improvement (in decibels)

∆PM{EMGcleaned
} = 20 ⋅ log10 PM{EMGpreFilt

}
PM{EMGcleaned

} (5.13)

between EMGpreFilt and EMGcleaned for assessing and comparing the performance of the
different algorithms.

5.3.2 Synthetic data
To create a realistic dataset in which a ground truth for separating cardiac and myographic
signal components is known, single-lead ECG signals were superposed with surface EMG
measurements above the musculus gastrocnemius, which are largely free of cardiac
interference. The ECG recordings were obtained from the Physionet PTB diagnostic
database [24]. To capture some variability, 15 different leads recorded from two healthy
subjects have been used (patient ID131, male, age 26, and patient ID 185, female, age 22).
ECG leads are not generally free of myographic noise—which would interfere with the
purpose of this whole analysis— , and thus a criterion for the rejection of noisy
measurements was developed: using the same window definition as throughout this whole
chapter, the power of signal components of EMGpreFilt inside and outside a [−80ms, 80ms]

Periodicity
Measure
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window around each detected R peak was compared, and signals with a noise level above−35 dB were discarded. After this rejection step, 25 ECG signals (of the initial 30) remained.
For the surface EMG components, two signals (one with periodic contractions and one with
irregular contractions) were recorded from a single, healthy subject (female, age 21) during
the Bachelor’s thesis of Sauer [64]. All pairs of components were combined at five different
SNR levels using EMGsyn = EMGmeas + 𝑘 ⋅ ECGmeas,
yielding a total of 250 synthetic signals, each with a length of 115 s, ranging from SNR
(calculated according to eq. (5.9)) −53.62 dB to −13.91 dB with a median of −36.21 dB.
These values are very close to those observed in the previous section on real respiratory
sEMGmeasurements.
In addition to the two performance measures ∆SNR and ∆PM defined in the previous

section, two additional error measures were computed. Firstly, the normalized norm of the
point-wise raw error 𝑒raw = ‖EMGmeas − EMGcleaned‖2‖EMGmeas‖2 (5.14)

was computed to quantify the raw signal recovery error. (In this and the following
performance evaluation, extreme outliers for which|EMGcleaned| > |max{ECGmeas}| (5.15)

were rejected. These were generally rare and mainly occurred with some of the model-based
filtering procedures.) As a secondary performance measure, the normalized norm of the
point-wise envelope error

𝑒env = ‖EMGmeas − 𝛽∗1EMGcleaned − 𝛽∗0‖2‖EMGmeas‖2 (5.16)

was computed, with EMG denoting the centralized mean average value (MAV) envelope
signal calculated with a window length of 128 samples, and𝛽∗1 , 𝛽∗0 = argmin𝛽1,𝛽2 ‖EMGmeas − 𝛽1EMGcleaned − 𝛽0‖2. (5.17)

This performance measure was selected in order to quantify the error in the waveform of the
MAV envelope and not so much the error in its offset or amplitude.

5.3.3 Algorithms under comparison
In the following, the performance of a number of algorithms for the removal of cardiac
artifacts from respiratory surface EMGmeasurements will be assessed and compared. The
compared algorithms are the following:

PATS The algorithmproposed in the previous section. Four versions of this algorithmwill be
considered: the basic algorithm without any shape information input signal 𝑢 (PATS),
with the RR interval length 𝑢RR,𝑘 as an input signal (PATS+RR), with the principal
component-based input 𝑢PC,𝑘 (PATS+PC, see the previous section for details), andwith
both 𝑢RR,𝑘 and 𝑢PC,𝑘 used simultaneously as input signals (PATS+RR+PC).

Raw Signal
Error

Envelope
Signal Error
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5.4 Results

TS A classical template subtraction algorithm, in the slightly improved version described in
Petersen et al. [52] as “adaptive template subtraction”.

SWT The stationary wavelet transform (SWT)-based denoising method described in detail
in Petersen et al. [52].

HP200 A simple fourth-order, zero-phase Butterworth high-pass filter with a cut-off
frequency of 200Hz.

EKS2, EKS25 The model-based filtering methods of Sameni [58] and Sameni et al. [60]
(EKS2) and Akhbari et al. [6] (EKS25).

EMD The empirical model decomposition-based removal procedure described in Graßhoff
et al. [25] and Petersen et al. [52].

All Kalman filtering procedures (PATS, EKS2, EKS25) have been implemented using a
sequential filtering scheme to avoid unnecessary matrix inversions [69]. To guarantee the
symmetry and positive definiteness of the covariance matrices, the Joseph stabilized
covariance update was used [69]. In the EKS25, which employs an extended Kalman
filter/smoother, state constraints were implemented using the projection method described
by Simon [68]. We found these constraints to lead to significantly improved performance
compared to the original implementation of Akhbari et al. [6]. For the smoothing step, the
Rauch-Tung-Striebel (RTS) smoother [55, 69] was employed. (Sequential filtering, the
Joseph stabilized covariance update, state constrained filtering, and the RTS smoother have
all been discussed and introduced in section 2.3.1.) A new tuning method was used for the
EKS25, which adjusts the EKS25 noise parameters based on the cardiac template amplitude
as well as the identified EMG noise covariance. Finally, all Butterworth filters were
implemented in second-order sections form for improved numerical stability.

5.4 Results
In this section, the results of the validation procedures described in section 5.3 for all of the
algorithms listed in section 5.3.3 will be shown. The full code implementing all algorithms
under consideration as well as the validation framework is openly available at https://
github.com/ime-luebeck/ecg-removal.

5.4.1 Real study data
Figure 5.4 shows exemplary results of all algorithms under consideration (raw and a resulting
envelope signal), applied to a snippet of a recording of one study subject. The algorithms
remove the cardiac interference to varying degrees of success. Especially in the envelope
signals, some degree of residual cardiac contamination (identifiable due to its periodicity
with the heartbeat) can be observed in practically all algorithms, with the newly proposed
PATS algorithm, SWT denoising, the HP200, and EMD denoising exhibiting the cleanest
envelope signals in this particular example. Some of the algorithms markedly suppress the
amplitude of the EMG signal, indicating changes in the spectral properties of the signals
due to the removal procedure (refer to Petersen et al. [52] for an empirical analysis of the
spectral effect of all algorithms except the newly proposed PATS algorithm). This effect is
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most visible in the results of the HP200 and EMD methods and may be of concern when
targeting, e.g., sEMG-based fatigue analyses or other analyses of spectral signal properties.
An interesting effect can be observed in the results of the EKS25 procedure on this data
snippet, which performs a kind of “gating” by suppressing the whole signal around each
QRS complex. Thus, no (or very little) cardiac interference remains, but EMG activity is
suppressed during these signal sections as well.
Figure 5.5 shows a box plot of∆SNR and∆PM for all algorithms under consideration. With

regards to ∆SNR, the best median performance across all datasets is achieved by the EKS25,
closely followed by the PATS algorithm. The PATS versions with different shape input signals
perform practically identically. The next best algorithm according to median performance in
this measure is the SWT, whereas the HP200, EMD, EKS2, and TS performing exhibit rather
unfavorable results. Concerning ∆PM, the best results by far are obtained by the HP200
and the EMD, followed by the different versions of the PATS algorithm, and then the SWT.
For this measure, differences in performance can be observed between the different PATS
versions. While median and worst-case performance are similar across the different input
signals, the optimal performance is markedly improved in the versions with shape input
signals.

5.4.2 Synthetic data

Figure 5.6 shows the separation performance of the different algorithms assessed on the
synthetic datasets as a function of the input signal’s SNR. The newly proposed PATS
algorithm achieves the best results at most SNR levels concerning all four measurements:𝑒raw, 𝑒env, ∆SNR, and ∆PM. The TS and EKS2 algorithms also achieve good results
concerning 𝑒raw, whereas SWT generally appears superior to these algorithms concerning𝑒env (except at very high input SNR, where TS outperforms SWT). As expected, the EMD
and HP200 algorithms are completely unable to recover the original, raw EMG signal, since
they strongly filter the signals. To assess the relationship between the exact performance
measures 𝑒raw and 𝑒env (which are only available in synthetic measurements) on the one
hand, and the empirical performance measures ∆SNR and ∆PM (which can also be
computed for real measuements) on the other hand, the correlation between these
measures was analyzed for the synthetic datasets. Figure 5.7 shows scatter diagrams
indicating the values these measures take for all 250 synthetic datasets, processed by all ten
algorithms. It is apparent that there is a close correlation between ∆SNR and the two exact
error measures, whereas the correlation to ∆PM is less pronounced. Spearman’s coefficient
of correlation was calculated, yielding values of -0.899 between 𝑒raw and ∆SNR, -0.905
between 𝑒env and ∆SNR, 0.298 between 𝑒raw and ∆PM, and 0.4106 between 𝑒env and ∆PM.
These results confirm that ∆SNR is the far more reliable performance of the two, achieving
high correlation with the exact performance measures 𝑒env and 𝑒raw across a large number
of synthetic datasets.

5.5 Discussion & outlook

The contributions of this chapter are twofold. Firstly, a new algorithm for the removal of
cardiac artifacts from surface EMG measurements of the respiratory muscles has been
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Figure 5.4 – A sample respiratory surface EMG signal snippet, raw except for powerline
interference removal (top row) and processed by various cardiac artifact removal algorithms.
The left column shows the raw signals, and the right column shows a 195ms (corresponding
to 200 samples) moving median of the absolute of the signal. (This type of envelope was
empirically found to be more robust to signal noise than, e.g., a root mean square envelope
or a mean absolute value envelope, see Petersen et al. [52].) For details on the algorithms
refer to section 5.3.3. All signals are given in µV. The shown excerpt is from subject A/10,
channel 1, of the study described in section 3.3.2. Algorithm performance varies strongly
between measurements and patients. 147
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Figure 5.5 – Improvements in SNR and periodicity measure achieved by various algorithms
for cardiac artifact removal on real respiratory surface EMG measurements. Standard
boxplot: median and interquartile range; whiskers show the min–max range. Refer to
section 5.3.3 for a details regarding the various algorithms, and to section 5.3.1 for the
definitions of the two performance measures.

proposed. Secondly, a comprehensive framework for the performance evaluation of
algorithms for the removal of such artifacts has been described.
The newly proposed algorithm, called probabilistic adaptive template subtraction (PATS) is

fully probabilistic, nonparametric, and thus highly adaptive to arbitrary cardiac component
waveforms, and explicitly models the temporal variability of subsequent artifacts. It is fully
unsupervised and requires no additional tuning or calibration to be applied to a new signal.
It does not require any additional measurements beyond the signal to be denoised. Since the
method is agnostic to the particular shape of the cardiac component, it could also readily be
applied to the removal of other types of periodic artifacts or the denoising of other signals
beyond EMGmeasurements. Probabilistic uncertainty quantification is readily available as
part of the method.
The new method was compared to a comprehensive array of previously proposed removal

algorithms both in real as well as synthetic measurements. The synthetic measurements
were composed of limb surface EMG measurements superposed with single-lead ECG

PATS
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Figure 5.6 – Performance comparison of the different algorithms using synthetic data.
(A) Relative pointwise error (see eq. (5.14)), (B) relative error of the EMG envelope (see
eq. (5.16)), (C) SNR improvement (see eq. (5.10)) and (D) PM improvement (see eq. (5.13))
achieved by the different algorithms. The x-axis represents the input SNRs of the synthetic
signals as defined by eq. (5.9), calculated on the 20Hz pre-filtered signals. The y-axis
represents themedian of the respective performancemeasure overall 50 synthetic datasets at
that particular SNR. The different lines show the results obtained by the PATS ( ), PATS+PC
( ), TS ( ), SWT ( ), HP200 ( ), EKS2 ( ), EKS25 ( ), and EMD ( ) algorithms.

measurements. An interesting complication when creating synthetic measurements in this
way is that single-lead cardiac signals are, of course, subject to noise originating (in part)
from muscles near the recording sites, which may disturb the subsequent analysis because
this constitutes an additional, unknown EMG signal source. For this reason, ECG signals
with a high noise level have been rejected. As part of a Bachelor’s thesis conducted under
the supervision of the author [64], a study was performed in which two channels of
respiratory surface EMG were recorded from ten subjects. In real measurements, a key
challenge is that no ground truth is available. Thus, two empirical measures were used: an
empirical SNR calculation, as well as the periodicity measurement (PM) originally
proposed by Sameni et al. [59]. An analysis of the degree of correlation of these two
empirical performance measures with exact error measures on the synthetic datasets
indicates that the proposed empirical SNR measures is the far more reliable of the two
performance measures. To the author’s knowledge, the performance evaluation framework
employed here is currently the most comprehensive framework described in the literature.
The performance results across all these data show that the newly proposed method

performs very favorably and seems to be the most accurate method currently available for
recovering the raw surface EMG signal from measurements suffering from strong cardiac
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Figure 5.7 – Relation of the four discussed performance measures. Each of the 2500 data
points in each graph represents one synthetic dataset (of which there are 250) processed by
one of the ten algorithms under consideration.

disturbances. On the other hand, a clear result of the presented analysis is that an artifact
removal algorithm must always be selected based on the requirements of the given
application: if only a rough characterization of muscular activity is required, a simple
high-pass filter with a high cut-off frequency and a subsequent envelope calculation will
suffice. If, on the other hand, the precise characteristics of the raw EMG signal are of
interest, a more sophisticated method—such as the proposed PATS algorithm—is
required. The previously proposed model-based filtering procedures (the EKS2 and the
EKS25) performed rather unfavorably in the performance analysis, despite significant effort
having been invested into their tuning and improved robustness. The limitation of these
techniques lies in the models they assume, which are only very rough approximations of
cardiac beat shapes. It was thus, in many cases, impossible to tune the noise covariances
such that the result is a clear separation between cardiac and myographic components. The
new PATS algorithm, on the other hand, employs no such constrained model of beat
morphology and thus does not suffer from this problem. Finally, in another recent
performance comparison, Xu et al. [81] found TS to outperform many other algorithms
(albeit not all of the algorithms considered here were included in their study). They did,
however, only consider a single SNR level, whereas our analysis clearly shows that, firstly,
SNR differs widely between recordings and, secondly, algorithm performance varies
significantly as a function of SNR (see fig. 5.6).
It is, however, crucial to also note the limitations of the employed framework for

performance evaluation. Both empirical measures (SNR and PM) have their drawbacks:
amplitude suppression (e.g., during the QRS complex) and spectral changes are not
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penalized by either of the two performance measures. This may potentially lead to
misleadingly good performance measures for algorithms that effectively perform strong
“gating” (i.e., suppression of the QRS segment to zero) or strong filtering. It appears likely
that in the analysis performed, this affected the results for at least the EKS25, the HP200, as
well as the EMD. Finally, the synthetic measurements here were based only on a small
number of limb EMG signals, a drawback that could easily be remedied in the future.
The proposed PATS algorithm could be further improved in several ways. Firstly, as was

already discussed in detail in section 5.2.6, the algorithm in its current form assumes that
the process noise affecting subsequent samples is statistically independent. This
assumption could be relaxed, potentially further increasing the algorithm’s performance,
albeit at the price of significantly increased computational complexity (see section 5.2.6).
Secondly, an extension of the algorithm to treat multiple, concurrently occurring sources of
disturbances might be of interest, e.g., to be robust to occasional extrasystoles, cardiac
pacemaker artifacts, or recurring recording device artifacts. This might be achievable using
an approach similar to sparse representation learning-based artifact removal [62, 63].
Thirdly, in many applications, multiple concurrently measured measurements may be
available, as opposed to the single-channel approach pursued here. In such cases, it would
appear attractive to exploit the additional information that is available from these further
measurement channels. Effectively, such a separation problem could be framed as an
adaptive blind deterministic multi-channel equalization problem, for which classical
algorithms are available in the literature [8, 22, 23]. Such problems are nontrivial to solve,
however, and care must be taken to not introduce strong modeling assumptions regarding
the relationship between the different channels, as these might otherwise lead to a
deterioration of separation performance and not to an improvement. (Recall the difficulties
encountered due to the inadequacy of the modeling assumptions of the EKS2 and EKS25
approaches.)
Finally, it was already discussed in section 5.1.2 that the use of data-driven machine

learning methods might yield important gains in separation performance in the near future,
with Bockelmann et al. [13] having first demonstrated promising results in this area. The
crucial challenge to solve for this approach concerns the availability of training data: since
separation ground truth is unavailable for real measurements, other means of generating
labeled training data must be pursued. One avenue might be the use of similar yet different
measurement signals, such as performed by Bockelmann et al. [13], who used invasive
diaphragm EMGmeasurements as a ground truth. Another possibility is the generation of
realistic synthetic signals using comprehensive physiological simulation models such as the
one described in the previous chapter. Using such simulated data, the separation ground
truth is, of course, readily available and can be used for model training. The use of synthetic
data for machine learning is a young field, however, and ripe with challenges [45]. More
generally, a reliable machine learning approach for a medical application must overcome
many obstacles, including model underspecification, shortcut learning, and inscrutability,
to be reliably successful in a practical application [53].
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Chapter 6

Parameter estimation under
concept drift, covariate shift, and
model mismatch
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Figure 6.1 – Left: a nonlinear function 𝑓(𝑥, 𝑡), changing over time and thus exhibiting
concept drift. Right: training data are drawn from 𝑝train(𝑥), but the model should perform
well on data drawn from 𝑝target(𝑥): there is covariate shift. How can one identify a simple,
time-varying model—say, a linear one— that minimizes the expected deviation from the
true function under the target distribution 𝑝target(𝑥) at each point in time?
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6.1 Problem definition & state of the art

Whereas the previous two chapters have treated two principal challenges
in recovering clean surface EMG signals from real-world respiratory measurements,

the present chapter and the following chapter 7 shift attention to the identification of
respiratory model parameters using such denoised sEMG signals. This practical
identification problem poses a number of crucial challenges to an estimation procedure1:

Time-varying model parameters — patients’ respiratory properties change over time
due to disease progression or recovery, change of positioning, and other factors.

Inevitable modeling errors — the respiratory system is highly complex, many of its
properties are unobservable using the available measurements, and there are many
unpredictable and unknown disturbances.

Covariate shift — respiratory time series recordings are often in large parts highly
repetitive due to fixed ventilator control schemes, and only rarely do ventilator
maneuvers or other events further explore the full space over which a patient model
should be accurate.

The combination of these properties substantially complicates the parameter identification
and necessitates the development of new estimation techniques.

The present chapter focuses on the theoretical development of these estimation
techniques. Firstly, a novel weighted Kalman filter and smoother are derived, as well as a
weighted maximum likelihood method to identify the parameters of the underlying
state-space model. Secondly, a simple yet accurate and computationally efficient method for
multivariate density estimation is proposed, which is employed to calculate the weights for
the importance-weighted parameter estimation procedure. The adequacy of the
combination of these two methods to solve importance-weighted, time-varying parameter
estimation problems is demonstrated using two synthetic estimation problems. In the
following chapter 7, these techniques will be employed to solve the challenges of the
respiratory parameter identification problem.2

6.1 Problem definition & state of the art

Section 6.1.1 defines the estimation problemunder consideration in this chapter; section 6.1.2
briefly surveys the state of the art concerning this estimation problem.

1For a more detailed discussion of these challenges in the context of sEMG-based respiratory model parameter
identification, refer to the following chapter 7.

2None of the developments presented in this chapter have been previously published elsewhere.
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Chapter 6 Parameter estimation under concept drift, covariate shift, and model mismatch

6.1.1 Problem definition
In section 2.1.6, static weighted likelihood maximization problems of the form�̂� = argmax𝜃 Eptarget[log 𝑞(𝑦 ∣ 𝑥, 𝜃)]

= argmax𝜃 Eptrain[𝑝target(𝑥)𝑝train(𝑥) log 𝑞(𝑦 ∣ 𝑥, 𝜃)]
≈ argmax𝜃 1𝑁𝑆 𝑁𝑆∑

𝑘=1
𝑝target(𝑥𝑘)𝑝train(𝑥𝑘) log 𝑞(𝑦𝑘 ∣ 𝑥𝑘, 𝜃)

were discussed, where 𝑞(𝑦 ∣ 𝑥, 𝜃) is an incorrectly specifiedmodel of 𝑝(𝑦 ∣ 𝑥) (in other words,
model mismatch is present), 𝑝target(𝑥) ≢ 𝑝train(𝑥) (there is covariate shift), and 𝑥 is the
target variable. The statistical estimation problem considered in this chapter represents a
dynamic extension of the above: in addition to model mismatch and covariate shift, we will
assume that concept drift is present, i.e., the conditional likelihood 𝑝(𝑦 ∣ 𝑥) is time-varying.
Specifically, we will aim to identify an optimal time-varying parameter trajectory

�̂�0∶𝑁𝑆 = argmax𝜃0∶𝑁𝑆 Eptarget(x)×Unif (k)[log 𝑞(𝑦𝑘 ∣ 𝑥𝑘, 𝜃𝑘) + log 𝑞(𝜃𝑘 ∣ 𝜃𝑘−1)] + 1𝑁𝑆 log 𝑞(𝜃0)
= argmax𝜃0∶𝑁𝑆 E𝑝train(𝑥)×Unif (𝑘) [ 𝑝target(𝑥𝑘)𝑝train(𝑥𝑘)⏟⎴⎴⏟⎴⎴⏟=∶𝑤𝑘

log 𝑞(𝑦𝑘 ∣ 𝑥𝑘, 𝜃𝑘) + log 𝑞(𝜃𝑘 ∣ 𝜃𝑘−1)] + 1𝑁𝑆 log 𝑞(𝜃0)
≈ argmax𝜃0∶𝑁𝑆 1𝑁𝑆 𝑁𝑆∑

𝑘=1𝑤𝑘 log 𝑞(𝑦𝑘 ∣ 𝑥𝑘, 𝜃𝑘)⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟=− ℛemp(𝜃)
Expected log likelihood

of measurements
over target distribution

+ 1𝑁𝑆 𝑁𝑆∑
𝑘=1 log 𝑞(𝜃𝑘 ∣ 𝜃𝑘−1) + 1𝑁𝑆 log 𝑞(𝜃0)⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟=−𝓁reg(𝜃)

Expected log likelihood of parameter trajectory

, (6.1)

where 𝑞(𝜃𝑘 ∣ 𝜃𝑘−1) specifies a model of the concept drift, and 𝑞(𝜃0) a prior on the initial set
of parameter values. The distributions 𝑝target(𝑥) and 𝑝train(𝑥) are not assumed to be time-
varying here, i.e., the covariate shift is assumed to be static. This assumption is not essential,
however, and could be dropped.
Equation (6.1) represents a structural importance-weighted empirical risk minimization

problem (see sections 2.1.2 and 2.1.6 for structural risk minimization), where the first part
represents the importance-weighted empirical loss ℛemp(𝜃), and the second part a
regularization term 𝓁reg(𝜃). Incidentally, if the measurement model 𝑞(𝑦 ∣ 𝑥, 𝜃) is linear in 𝜃,
and if the concept drift model can be represented as a linear state-space model, then
eq. (6.1) is exactly equivalent to the optimization problem solved by a classical, linear
Kalman smoother (see eqs. (2.27) and (2.28))—except for the sample weights 𝑤𝑘. This
near-equivalence will be exploited later on in this chapter. Differently from the existing
covariate shift literature, we will not treat the distribution 𝑝target(𝑥) as representative of
some real, empirical distribution, but rather use it as a tuning parameter to control which
regions of the data space should be described well by the model, akin to frequency
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6.1 Problem definition & state of the art

weighting in system identification [31, 42]. Finally, we will also discuss a principled way to
estimate the (hyper-)parameters 𝜓 of the concept drift model 𝑞(𝜃𝑘 ∣ 𝜃𝑘−1).
To summarize, the problem considered in this chapter is to estimate linear model

parameters in the face of a time-varying system, model mismatch, and covariate shift.

6.1.2 State of the art
The problem of performing estimation in the face of differing training and target distributions
has received much attention in the statistics and machine learning communities. Starting
in 1952 with the seminal publication of Horvitz and Thompson [20], statisticians have used
inverse probability weighting to account for confounding factors such as sampling biases or
missing data in classification [20, 24, 34, 39, 40, 50]. These problems are especially prevalent
in medical studies because of low disease prevalence and treatment assignment based on
disease status, among other factors [34, 39, 50].
In their highly influential publication, Shimodaira [45] have described a general

framework for regression under different training and target distributions 𝑝train(𝑥) and𝑝target(𝑥) (a situation they call covariate shift), inciting a surge of research under the label
covariate shift adaptation [17, 21, 38, 41, 45, 47, 49, 52]. One of the key observations made
by Shimodaira [45] is that

Eptarget[𝓁(𝑥; 𝜃)] = Eptrain[𝑝target(𝑥)𝑝train(𝑥) 𝓁(𝑥; 𝜃)]
under the assumption supp

(𝑝target) ⊂ supp(𝑝train), and hence the estimate
�̂� = argmin𝜃 Eptarget[𝓁(𝑥; 𝜃)] = argmin𝜃 Eptrain[𝑝target(𝑥)𝑝train(𝑥) 𝓁(𝑥; 𝜃)]

can be determined by means of weighted risk minimization using the original training data,
where the weights 𝑤(𝑥) are chosen as

𝑤(𝑥) = 𝑝target(𝑥)𝑝train(𝑥) . (6.2)

The density ratio 𝑝target(𝑥)∕𝑝train(𝑥) is often called importance [8, 17, 23, 49, 52]. If 𝓁(𝑥; 𝜃)
is the quadratic loss function, the resulting estimator is the weighted least squares (WLS)
estimator discussed in section 2.2.2. The importance weighted estimator is asymptotically
bias-free, but in general not efficient [24, 45]): for large sample sizes, the optimal weights
are indeed given by equation (6.2) as described above, while for the other extreme case
where the model is correctly specified, the optimal weights are given by 𝑤(𝑥) ≡ 1, i.e.,
OLS in the case of the quadratic loss function [45]. To facilitate weight selection in practical
applications, Shimodaira [45] therefore proposes to consider weights obtained by continuous
“interpolation” between the two extreme cases 𝑤(𝑥) ≡ 1 and 𝑤(𝑥) = 𝑝target(𝑥)∕𝑝train(𝑥) by
choosing 𝑤∗(𝑥) = 𝑤(𝑥)𝛽 with 0 ≤ 𝛽 ≤ 1.
As a brief remark, notice that the problem of regression or classification under covariate

shift is distinct from (though related to) what is called imbalanced classification [5, 6, 11,
13]. In the case of covariate shift, the concern is that 𝑝train(𝑥) and 𝑝target(𝑥) differ, whereas
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Chapter 6 Parameter estimation under concept drift, covariate shift, and model mismatch

in the imbalanced classification case, the concern is that an imbalanced outcome training
distribution 𝑝train(𝑦) = ∫ 𝑝(𝑦 ∣ 𝑥)𝑝train(𝑥) d𝑥
may prove problematic in some sense. There does not seem to be a fundamental reason for
why such an imbalance in 𝑝train(𝑦) would cause problems, though, as long as covariate shift
is not the underlying reason, and as long as a proper scoring rule is used [14, 15, 53]. (Most
notably, this excludes classification accuracy as a scoring rule.)
Returning to importance-weighted regression, it is a fundamental feature of this method

that some samples will be assigned (potentially much) larger weights than others. This can
be easily seen to increase estimator variance and dependence of the final estimate on just
a few influential examples, a problem well-known in the literature [8]. Various remedies
for this problem have been proposed, including exponential weight flattening as proposed
by Shimodaira [45], weight trimming [28], and stratification of samples into few, discrete
categories for which average weights are then computed [7, 24]. Generally, it is well known
that the success of such aweighted estimation schemehinges in large parts on the correctness
of the weight specification [8, 24, 28]. Importance weighting is structurally identical to many
robust estimation schemes: both solve a weighted likelihood maximization problem; only
the weight selection strategies differ [12, 33, 45, 55]. Whereas robust estimators reduce
the weights on (outlier) samples that do not conform with the specified model, importance
weighting reduces the weight on frequently observed sample types and increases the weight
on rarely observed sample types. The two strategies are orthogonal to each other: both
frequently occurring and rare samples may conform well or badly with the specified model.
In practice, a crucial question is how to obtain the importance 𝑝target(𝑥)∕𝑝train(𝑥), which

is assumed to be known by [45], but which is unavailable in many applications. A naive
approach would be to use any parametric or non-parametric density estimation method for
estimating the two densities 𝑝target(𝑥) and 𝑝train(𝑥). However, density estimation is a hard
problem, especially in high-dimensional spaces with a large number of samples, and hence
many methods have been proposed for direct importance estimation without estimating the
two densities individually ([23, 48, 49, 52]). Two popular algorithms are the
Kullback-Leibler Importance Estimation Procedure (KLIEP, see Sugiyama et al. [48, 49])
and Unconstrained Least-Squares Importance Fitting (uLSIF, see Kanamori et al. [23]). As
mentioned previously, however, the situation we consider here differs from the standard
setting since we assume 𝑝target(𝑥) to be a given (or automatically determined) tuning
parameter and not something to be estimated from the data. Thus, the direct importance
estimation procedures mentioned above are not applicable to our case, and we will need to
resort to density estimation procedures for approximating 𝑝train(𝑥). However, as mentioned
above, non-parametric multivariate density estimation with a large number of samples is a
hard problem [16, 36, 43], and standard software libraries typically do not provide
applicable methods even today. The computational effort required for computing a standard
kernel density estimate (KDE) is 𝒪(𝑁2), where 𝑁 denotes the number of data points taken
into consideration, although faster methods based on the non-uniform fast Fourier
transform have recently been proposed [35, 36]. Moreover, evaluating a standard kernel
density estimate based on 𝑁 data points at𝑀 positions requires 𝒪(𝑀𝑁) operations. This
quadratic evaluation complexity renders these methods infeasible for applications on long
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6.2 Importance-weighted state estimation

(potentially streaming) time series, even disregarding for a moment the computational
effort required to obtain said kernel density estimate in the first place. To solve this problem,
various fast updating mechanisms have been proposed in the literature [27]. In addition to
the challenges related to computational complexity, the automatic determination of the
kernel parameters in the multivariate case represents another crucial research challenge [3,
36].
Concerning the identification of time-varying model parameters, there is, of course, a

large class of classical recursive identification methods, including the famous recursive
least squares (RLS) algorithm and the Kalman filter and smoother, both of which have been
discussed in chapter 2. Specifically, section 2.3.2 discusses how to employ a linear Kalman
filter or smoother to perform time-varying parameter estimation in a regression model that
is linear in the parameters. Such recursive (or incremental) identification schemes fall
under the modern umbrella terms of learning from streaming data and online learning. In
recent years, the topic of time-varying model parameter identification has received renewed
interest by the machine learning community under the terms concept drift and concept
shift [19, 25, 29, 56]. Popular methods for identifying time-varying models include adaptive
learning methods, windowing techniques, and ensemble methods [19]. Recently, Oh et al.
[37] have proposed a modified long-short term memory (LSTM) network specifically
tailored towards time-varying systems. Mathematically speaking, parameter identification
in time-varying systems is, of course, simply a time-varying optimization problem, for
which many different approaches are known [46].
Surprisingly few researchers have treated the combined problem of identification in the

face of both covariate shift and concept drift [19, 26, 29, 54]. All prior works known to the
author treat (often binary) classification problems— the applicationmotivating this research,
discussed in the following chapter 7, is a regression problem, however. Moreover, many of the
proposed approaches represent rather ad-hocmodifications of existing learning algorithms to
achieve adaptability by, e.g., retraining within a moving window or bagging multiple model
instances. In the statistical literature, many authors have treated static weighted likelihood
estimation problems as discussed above. However, to the author’s knowledge, none have
coupled weighted estimation with a model of concept drift as specified in eq. (6.1). Here,
we will aim to derive a fully model-based, probabilistic regression procedure accounting for
covariate shift and concept drift. For this, wewill employ a novel, weightedKalman filter and
smoother, as well as a weighted prediction error identification method to identify the noise
covariances. Technically, the new weighted filtering method is similar in spirit to earlier
research on adaptive-gain Kalman filtering, which also exploits time-varying sample weights
(albeit in a different way and towards a different purpose) [4, 44].

6.2 Importance-weighted state estimation

In this section, a general formulation of a weighted linear Kalman filter and smoother will be
derived, which can beused to solve aweighted state estimation problem. Given a probabilistic
model of the concept drift as well as information about the time-varying importance𝑤𝑘, this
will enable us to perform parameter estimation in the face of concept drift, covariate shift,
and model mismatch.
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Chapter 6 Parameter estimation under concept drift, covariate shift, and model mismatch

In section 2.3.2, we saw that the linear Kalman smoother solves the optimization problem�̂�𝑠0∶𝑁𝑆 = argmax𝜃0∶𝑁𝑆 𝑞(𝜃0∶𝑁𝑆 ∣ 𝑦1∶𝑁𝑆 )= argmax𝜃0∶𝑁𝑆 log 𝑞(𝜃0∶𝑁𝑆 ∣ 𝑦1∶𝑁𝑆 )= argmax𝜃0∶𝑁𝑆 log 𝑞(𝜃0∶𝑁𝑆 , 𝑦1∶𝑁𝑆 )
= argmax𝜃0∶𝑁𝑆

𝑁𝑆∑
𝑘=1 log 𝑞(𝑦𝑘 ∣ 𝜃𝑘) + 𝑁𝑆∑

𝑘=1 log 𝑞(𝜃𝑘 ∣ 𝜃𝑘−1) + log 𝑞(𝜃0) (6.3)

= argmax𝜃0∶𝑁𝑆 − 12 𝑁𝑆∑
𝑘=1

[(𝑦𝑘 − 𝐶𝑘𝜃𝑘)𝖳Σ−1𝜈,𝑘(𝑦𝑘 − 𝐶𝑘𝜃𝑘) + log|Σ𝜈,𝑘|] (6.4)

− 12 𝑁𝑆−1∑
𝑘=0 [(𝜃𝑘+1 − 𝐴𝑘+1𝜃𝑘 − 𝐵𝑘+1𝑢𝑘+1)𝖳Σ−1𝜂,𝑘+1(𝜃𝑘+1 − 𝐴𝑘+1𝜃𝑘 − 𝐵𝑘+1𝑢𝑘+1) + log|Σ𝜂,𝑘+1|]− 12[(𝜃0 − �̂�+0 )𝖳(𝑃+0 )−1(𝜃0 − �̂�+0 ) + log|𝑃+0 | +𝑁𝑆(𝑁𝜃 +𝑁𝑦) log 2𝜋]

for the hidden state estimates �̂�𝑠𝑘, where 𝑞(𝑦𝑘 ∣ 𝜃𝑘) is given by the linear measurement model𝑦𝑘 = 𝐶𝑘𝜃𝑘 + 𝜈𝑘, 𝜈𝑘 ∼𝒩(0,Σ𝜈), (6.5)

and 𝑞(𝜃𝑘 ∣ 𝜃𝑘−1) is given by the linear state progression model𝜃𝑘 = 𝐴𝑘𝜃𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝜂𝑘, 𝜂𝑘 ∼𝒩(0,Σ𝜂) (6.6)

with a known input signal 𝑢𝑘. Moreover, we noted that solving this optimization problem
for the random walk model 𝜃𝑘 = 𝜃𝑘−1 + 𝜂𝑘𝑦𝑘 = 𝑥𝖳𝑘𝜃𝑘 + 𝜈𝑘, (6.7)

with Σ𝜂 = 0, Σ𝜈 = const and 𝑃+0 = diag(∞,… ,∞) (and 𝐶𝑘 = 𝑥𝖳𝑘) is equivalent to solving the
(multiple) multivariate static least-squares optimization problem

�̂� = argmin𝜃
𝑁𝑆∑
𝑖=1(𝑦𝑖 − 𝑥𝑖𝜃)𝖳Σ−1𝜀 (𝑦𝑖 − 𝑥𝑖𝜃).

This equivalence can be generalized: allowing for arbitrary matrices 𝐴𝑘 and Σ𝜂 (as opposed
to 𝐴𝑘 = 1∀ 𝑘 and Σ𝜂 = 0 above), the (usual) Kalman smoother can be utilized to perform
fully probabilistic regression in the face of concept drift, where 𝑞(𝜃𝑘 ∣ 𝜃𝑘−1) (parameterized
by 𝐴𝑘 and Σ𝜂) specifies an assumed model of concept drift and𝑦𝑘 = 𝑥𝖳𝑘𝜃𝑘 + 𝜈𝑘 (6.8)
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6.2 Importance-weighted state estimation

the regression model.3
How can this approach be extended to also treat covariate shift correctly? In the static

regression case, i.e., without concept drift, covariate shift is treated within the
maximum-likelihood estimation framework by solving the importance-weighted log
likelihood optimization problem

�̂� = argmax𝜃
𝑁𝑆∑
𝑘=1𝑤𝑘 log 𝑞(𝑦𝑘 ∣ 𝜃) (6.9)

instead of its unweighted counterpart, see section 2.1.6. Here, analogously, we will consider
the weighted optimization problem

�̂�𝑤𝑠0∶𝑁𝑆 = argmax𝜃0∶𝑁𝑆
𝑁𝑆∑
𝑘=1𝑤𝑘 log 𝑞(𝑦𝑘 ∣ 𝜃𝑘) + 𝑁𝑆∑

𝑘=1 log 𝑞(𝜃𝑘 ∣ 𝜃𝑘−1) + log 𝑞(𝜃0) (6.10)

= argmax𝜃0∶𝑁𝑆 − 12 𝑁𝑆∑
𝑘=1𝑤𝑘 [(𝑦𝑘 − 𝐶𝑘𝜃𝑘)𝖳Σ−1𝜈,𝑘(𝑦𝑘 − 𝐶𝑘𝜃𝑘) + log|Σ𝜈,𝑘|] (6.11)

− 12 𝑁𝑆−1∑
𝑘=0 [(𝜃𝑘+1 − 𝐴𝑘+1𝜃𝑘 − 𝐵𝑘+1𝑢𝑘+1)𝖳Σ−1𝜂,𝑘+1(𝜃𝑘+1 − 𝐴𝑘+1𝜃𝑘 − 𝐵𝑘+1𝑢𝑘+1) + log|Σ𝜂,𝑘+1|]− 12[(𝜃0 − �̂�+0 )𝖳(𝑃+0 )−1(𝜃0 − �̂�+0 ) + log|𝑃+0 | +𝑁𝑆(𝑁𝜃 +𝑁𝑦) log 2𝜋]

instead of eq. (6.3). Notice that eq. (6.9) is a special case of eq. (6.10), which is obtained by
choosing a flat prior 𝑞(𝜃0) and the static state model 𝑞(𝜃𝑘 ∣ 𝜃𝑘−1) = 𝛿(𝜃𝑘 − 𝜃𝑘−1). Moreover,
recall again that eq. (6.10) is a structural importance-weighted empirical risk minimization
problem, where the first part represents the empirical risk ℛemp(𝜃) and the second part
represents a regularization term 𝓁reg(𝜃). Conveniently, the optimization problem (6.11) can
be readily solved using a standard linear Kalman smoother, by simply letting

Σ̃𝜈,𝑘 ∶= 1𝑤𝑘Σ𝜈,𝑘
and running the standard algorithm with measurement noise covariance matrices Σ̃𝜈,𝑘
instead of Σ𝜈,𝑘. Thus, we have a simple procedure available for solving general weighted
state estimation problems— including, in particular, regression problems in the face of
concept drift, covariate shift, and model mismatch.
In the derivation of the standard Kalman filter and smoother, it was assumed that the

matrices Σ𝜈,𝑘 correctly denote the measurement noise covariance. Based on this
assumption (and others), it was derived that the quantity 𝑃+𝑘 in the Kalman filter algorithm
correctly represents the covariance of the (weighted) state estimate. Since we are now using
the weighted matrices Σ̃𝜈,𝑘 instead, this is no longer the case, and 𝑃+𝑘 becomes a purely
computational quantity that is leveraged for solving eq. (6.10). This is analogous to our
discussion of the correct calculation of the WLS estimator covariance in section 2.2.2. The
3The extension to the fully nonlinear setting is straightforward but not spelled out here for brevity’s sake.
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Chapter 6 Parameter estimation under concept drift, covariate shift, and model mismatch

correct covariance of the weighted (filtered) state estimate can be derived, however: From
eq. (6.6), it follows4 that

Var[𝜃𝑘] = 𝐴𝑘 Var[𝜃𝑘−1]𝐴𝖳𝑘 + Σ𝜂
which, assuming 𝜃𝑘−1 ∼𝒩(�̂�𝑤+𝑘−1, 𝑃𝑤+𝑘−1), yields𝑃𝑤−𝑘 ∶= Var[�̂�𝑤−𝑘 ] = 𝐴𝑘𝑃𝑤+𝑘−1𝐴𝖳𝑘 + Σ𝜂.
Similarly, from the weighted state update (see algorithm 2 in section 2.3.1, substituting the
weighted estimate �̂�𝑤− for �̂�−) �̂�𝑤+𝑘 = �̂�𝑤−𝑘 + 𝐾𝑘(𝑦𝑘 − 𝐶𝑘�̂�𝑤−𝑘 )= (𝐼 − 𝐾𝑘𝐶𝑘)�̂�𝑤−𝑘 + 𝐾𝑘𝑦𝑘
it follows that 𝑃𝑤+𝑘 ∶= Var[�̂�𝑤+𝑘 ]= (𝐼 − 𝐾𝑘𝐶𝑘)Var[�̂�𝑤−𝑘 ](𝐼 − 𝐾𝑘𝐶𝑘)𝖳 + 𝐾𝑘 Var[𝑦𝑘]𝐾𝖳𝑘= (𝐼 − 𝐾𝑘𝐶𝑘)𝑃𝑤−𝑘 (𝐼 − 𝐾𝑘𝐶𝑘)𝖳 + 𝐾𝑘Σ𝜈𝐾𝖳𝑘.
The resulting weighted linear Kalman filter algorithm is summarized in algorithm 7. Notice
that for𝑊𝑘 ≡ 1, the update equations for the covariances 𝑃+ and 𝑃𝑤+ coincide, as desired.
Moreover, for Σ𝜂 ≡ 0, the estimator covariance at the final state is identical to the covariance
obtained by performing WLS regression and evaluating eq. (2.20).
The correct estimator covariance of the smoothed weighted state estimates can be derived

analogously: From the standard RTS smoothing equation (see algorithm 4 in section 2.3.1)�̂�𝑤𝑠𝑘 = �̂�𝑤+𝑘 + 𝑆𝑘(�̂�𝑤𝑠𝑘+1 − �̂�𝑤−𝑘+1)
it follows that 𝑃𝑤𝑠𝑘 = 𝑃𝑤+𝑘 + 𝑆𝑘(𝑃𝑤𝑠𝑘+1 − 𝑃𝑤−𝑘+1)𝑆𝖳𝑘.
Algorithm 8 summarizes the resulting weighted Rauch-Tung-Striebel smoother (WRTS).

6.3 Importance-weighted hyperparameter estimation
A crucial question for the practical application of the scheme discussed in the previous
section remains: how can one identify the parameters 𝜓 of the state-space model eqs. (6.5)
and (6.6), i.e., some or all of the (components of the) matrices 𝐴𝑘, 𝐶𝑘, Σ𝜂,𝑘, and Σ𝜈,𝑘, if they
are not known a priori? Many different methods are known in the literature for tuning the
parameters of state-space models; here, we will employ a prediction error identification
method (PEM). Classical quadratic PEM [31] (which is closely related to ML estimation)
chooses the hyperparameters as the solution to the empirical risk minimization problem

�̂�PEM = argmin𝜓
𝑁𝑆∑
𝑘=1

(𝑦𝑘 − 𝐶𝑘�̂�−𝑘 )2= argmin𝜓 EPNS (x)×PNS (k)[(𝑦𝑘 − 𝐶𝑘�̂�−𝑘 )2],
4Recall that Var[𝐴𝑥 + 𝑐] = 𝐴Var[𝑥]𝐴𝖳 + Var[𝑐] (assuming 𝐴 to be known).
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6.3 Importance-weighted hyperparameter estimation

Algorithm 7:Weighted linear Kalman filter
1 Function WKF

Input :Mean �̂�+0 ∈ ℝ𝑁𝜃 and covariance 𝑃+0 = 𝑃𝑤+0 ∈ ℝ𝑁𝜃×𝑁𝜃 of the
initial state estimate 𝑝(𝜃0), matrices 𝐴𝑘, 𝐵𝑘, 𝐶𝑘,Σ𝜈,𝑘 and Σ𝜂,𝑘
of suitable dimensions, measurements 𝑦𝑘 ∈ ℝ𝑁𝑦 and
inputs 𝑢𝑘 ∈ ℝ𝑁𝑢 , as well as a time-varying weighting
matrix𝑊𝑘, each for 𝑘 = 1,… , 𝑁𝑆.

Output :Mean �̂�𝑤+𝑘 and covariance 𝑃𝑤+𝑘 of the optimal solution to the
weighted state inference problem (6.11) for 𝑘 = 1,… , 𝑁𝑆,
each calculated using samples up until index 𝑘.

2 begin
3 for 𝑘 = 1 to𝑁𝑆 do

// State prediction using eq. (2.21)
4 �̂�𝑤−𝑘 = 𝐴𝑘�̂�𝑤+𝑘−1 + 𝐵𝑘𝑢𝑘
5 𝑃−𝑘 = 𝐴𝑘𝑃+𝑘−1𝐴𝖳𝑘 + Σ𝜂,𝑘

// Recursive posterior update using eq. (2.22)
6 𝐾𝑘 = 𝑃−𝑘 𝐶𝖳𝑘(𝐶𝑘𝑃−𝑘 𝐶𝖳𝑘 +𝑊𝑘Σ𝜈,𝑘)−1
7 �̂�𝑤+𝑘 = �̂�𝑤−𝑘 + 𝐾𝑘(𝑦𝑘 − 𝐶𝑘�̂�𝑤−𝑘 )
8 𝑃+𝑘 = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃−𝑘 (𝐼 − 𝐾𝑘𝐶𝑘)𝖳 + 𝐾𝑘𝑊𝑘Σ𝜈,𝑘𝐾𝖳𝑘

// Optional: calculate estimator uncertainty
9 𝑃𝑤−𝑘 = 𝐴𝑘𝑃𝑤+𝑘−1𝐴𝖳𝑘 + Σ𝜂,𝑘
10 𝑃𝑤+𝑘 = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃𝑤−𝑘 (𝐼 − 𝐾𝑘𝐶𝑘)𝖳 + 𝐾𝑘Σ𝜈,𝑘𝐾𝖳𝑘
11 end
12 end
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Algorithm 8:Weighted linear Rauch-Tung-Striebel smoother (WRTS)
1 Function WRTS

Input :Mean �̂�𝑤+0 ∈ ℝ𝑁𝜃 and covariance 𝑃+0 = 𝑃𝑤+0 ∈ ℝ𝑁𝜃×𝑁𝜃 of the
initial state estimate 𝑝(𝜃0), matrices 𝐴𝑘, 𝐵𝑘, 𝐶𝑘,Σ𝜈,𝑘 and Σ𝜂,𝑘
of suitable dimensions, measurements 𝑦𝑘 ∈ ℝ𝑁𝑦 and
inputs 𝑢𝑘 ∈ ℝ𝑁𝑢 , as well as a time-varying weighting
matrix𝑊𝑘, each for 𝑘 = 1,… , 𝑁𝑆.

Output :Mean �̂�𝑤𝑠𝑘 and covariance 𝑃𝑤𝑠𝑘 of the optimal solution to the
weighted state inference problem (6.11) for 𝑘 = 0, 1,… , 𝑁𝑆.

2 begin
// Forward filtering using the standard Kalman filter

3 Run WKF

4 �̂�𝑤𝑠𝑁𝑆 = �̂�𝑤+𝑁𝑆
// Backward smoothing using the Rauch-Tung-Striebel smoother

5 for 𝑘 = 𝑁𝑆 − 1 to 0 do
6 Solve 𝑆𝑘𝑃−𝑘+1 = 𝑃+𝑘𝐴𝖳𝑘 for 𝑆𝑘
7 𝑃𝑠𝑘 = 𝑃+𝑘 + 𝑆𝑘(𝑃𝑠𝑘+1 − 𝑃−𝑘+1)𝑆𝖳𝑘
8 �̂�𝑤𝑠𝑘 = �̂�𝑤+𝑘 + 𝑆𝑘(�̂�𝑤𝑠𝑘+1 − �̂�𝑤−𝑘+1)

// Optional: calculate estimator uncertainty
9 𝑃𝑤𝑠𝑘 = 𝑃𝑤+𝑘 + 𝑆𝑘(𝑃𝑤𝑠𝑘+1 − 𝑃𝑤−𝑘+1)𝑆𝖳𝑘
10 end
11 end
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where �̂�−𝑘 denotes a forward prediction of the state 𝜃𝑘, given the measurements 𝑦1∶𝑘−1. Here,
however, we are interested in solving time-varying regression problems, i.e., 𝐶𝑘 = 𝑥𝖳𝑘, under
covariate shift. Thus, the aim is not to minimize the risk over 𝑝train(𝑥) ≈ 𝑃𝑁𝑆 but instead
over 𝑝target(𝑥). Therefore, we will instead solve the importance-weighted empirical risk
minimization (IWERM) or importance-weighted prediction error minimization (IWPEM)
problem

�̂�IWPEM = argmin𝜓 EPNS (x)×PNS (k)[𝑤𝑘 (𝑦𝑘 − 𝐶𝑘�̂�𝑤−𝑘 )2]
= argmin𝜓

𝑁𝑆∑
𝑘=1𝑤𝑘 (𝑦𝑘 − 𝐶𝑘�̂�𝑤−𝑘 )2

≈ argmin𝜓 Eptarget(x)×Unif (k)[𝑤𝑘 (𝑦𝑘 − 𝐶𝑘�̂�𝑤−𝑘 )2] = argmin𝜓
𝑁𝑆∑
𝑘=1𝑤𝑘 (𝑦𝑘 − 𝐶𝑘�̂�𝑤−𝑘 )2 ,

where 𝑤𝑘 denotes the importance weight, and �̂�𝑤−𝑘 the mean of the predicted state
distribution computed by the WKF (see algorithm 7). Notice that the expression𝑦𝑘 − 𝐶𝑘�̂�𝑤−𝑘 is also called the innovation of the (weighted) Kalman filter. This quantity can
be readily optimized using a numerical optimization scheme, as will be demonstrated in the
numerical examples in section 6.5.

6.4 Efficient and accurate multivariate density estimation
The importance-weighted estimation methods described in the previous two sections rely
on the availability of accurate importance weights. While 𝑝target(𝑥) will be assumed to be
known, 𝑝train(𝑥) must be estimated from the available data. This is a nontrivial endeavor
because the setting is multivariate, the number of samples is large, and the resulting density
estimatemust be evaluated at equallymany points (namely, at eachmeasured sample). To the
author’s knowledge, no efficient method is readily available in standard software packages.
Closest to the fulfillment of these requirements may be the fastKDE method [36], which
performs highly efficient kernel density estimation (KDE) in the multivariate setting, but
which, however, is inefficient if the number𝑀 of query points is large. For these reasons, a
simplemultivariate histogram interpolationmethod is implemented here, which is described
in the following. As density estimation is not the main focus of this chapter and the method
is, at its core, far from new, the method is described rather briefly. For the interested reader,
the full code is openly available at https://github.com/e-pet/mvdensity.
A multivariate histogram can be computed very efficiently, and the complexity of the

interpolation operation then only depends on the number 𝑁𝑏 of histogram bins, not the
number of measured samples. The resulting interpolated density surface can then be
evaluated with complexity 𝒪(𝑁𝑏𝑀), which is sufficiently cheap. First, artificial boundary
histogram bins with zero counts are added to force the smoothed density surface to decline
towards zero outside of the histogram, and the geometrical center points of the histogram
bins are calculated. For the interpolation step, the makima interpolation method is
used [22], which represents a modification of the interpolation method proposed by Akima
[1]. To prevent potentially negative undershoots during the smoothing step and thus

Multivariate
Histogram
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guarantee the (semi-)positivity of the resulting PDF estimate, the histogram counts are
transformed using the inverse softplus function [9]𝑦 = 𝑓−1(𝑥) = log(𝑒𝑥 − 1).
Interpolation is then performed on the transformed histogram counts, and the resulting
interpolated PDF estimate is transformed back using the softplus function [9]𝑓(𝑦) = log(1 + 𝑒𝑦).
Finally, to obtain a correctly normalized density estimate, the integral of the estimated PDF
surface is approximated using a numerical integration scheme, and the estimated surface is
divided by this constant.

6.5 Results
The weighted Rauch-Tung-Striebel smoother presented in the previous section will now be
applied to two numerical examples to demonstrate its utility for time-varying, importance-
weighted parameter estimation. The first is an example of static regression under model
mismatch and covariate shift, i.e., the parameters are not time-varying. This estimation
problem is solvedusing importance-weightedmaximum likelihood estimation. In the second
example, model mismatch and covariate shift are also present, and in addition, there is
concept drift. A concept drift model is identified using the importance-weighted maximum
likelihood approach described in section 6.3, and the time-varying model parameters are
identifiedusing the importance-weightedKalmanfilter and smootherdiscussed in section 6.2.
First, however, the multivariate density estimation scheme discussed in the previous section
will be validated because this method will be employed for the weight estimation in the two
importance-weighted estimation problems.

6.5.1 Multivariate density estimation
To validate the accuracy of the proposed density estimation method, three example problems
are considered:

• a one-dimensional Gaussian mixture distribution with two components,

• a two-dimensional Gaussian mixture distribution with two components, and

• a five-dimensional Gaussian mixture distribution with three components.

In all three cases, 𝑁𝑟 = 10 samples of size 𝑁𝑆 = 10𝓁 are drawn, with 𝓁 = 1,… , 6. PDF
estimation is performed on each of the samples using the method described in the previous
section. The differences between the true PDFs and the estimated PDFs are quantified using
the Jensen-Shannon divergence [30], which is given by

DJS(𝑃 ‖ 𝑄) = 12 DKL(𝑃 ‖ 𝑀) + 12 DKL(𝑄 ‖ 𝑀), 𝑀 = 12𝑃 + 12𝑄,
where DKL(𝑃 ‖ 𝑄) denotes the Kullback-Leibler divergence (defined in eq. (2.11)). As
opposed to the Kullback-Leibler divergence, the Jensen-Shannon divergence has the

Jensen-
Shannon
Divergence
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Figure 6.2 –An example of one-dimensional density estimation using themethod described
in section 6.4. Left: Histogram of the observed data. PDF of the true distribution, from
which 𝑁𝑆 samples have been drawn. Right: the true probability distribution 𝑝(𝑥), from
which the 𝑁𝑆 samples yielding the histogram in the left panel have been drawn, and the
estimated probability distribution �̂�(𝑥). The latter is obtained by simple interpolation of the
(inverse softplus-transformed) histogram. In this example, 𝑁𝑆 = 1000.
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Figure 6.3 – Performance evaluation of the described multivariate density estimation
scheme. The graphs show the Jensen-Shannon divergence DJS(𝑃 ‖ �̂�) between the true
probability distribution 𝑃 and the estimation distribution �̂� as a function of the sample
size𝑁𝑆 , for the three Gaussian mixture (GM) examples described in the text. Values shown
are the median over 10 runs, with the error bars indicating the min-max range.

desirable property of being finite for all distributions—more specifically, it is bounded
between zero and one, with zero being attained if both distributions are identical.5
Figure 6.2 shows the result of an exemplary instance of the one-dimensional example, and
fig. 6.3 the median, maximum, and minimum Jensen-Shannon divergence for each
example as a function of 𝑁𝑆. The method yields accurate results in all three settings, with
the accuracy increasing with increasing sample size 𝑁𝑆.

6.5.2 Multivariate static importance-weighted estimation
We will now consider a simple example of multivariate static regression in the face of
covariate shift and model misspecification. This example serves to illustrate the general
problem of regression under covariate shift; the second example following in section 6.5.3
will illustrate the more complex case with concept drift occurring. We draw 𝑁𝑆 = 5000 i.i.d.
samples [𝑥1, 𝑥2] from𝑥1 ∼ Γ[0,10](𝑎=2, 𝑏=1), 𝑥2 ∼𝒩[−3,3](𝜇=0, 𝜎=1),
5Moreover, the Jensen-Shannon divergence induces a proper metric: its square root [10].

173



Chapter 6 Parameter estimation under concept drift, covariate shift, and model mismatch

where Γ[0,10](𝑎=2, 𝑏=1) denotes the gamma distribution with shape and scale parameters 𝑎
and 𝑏, truncated to [0, 10], and𝒩[−3,3](𝜇=0, 𝜎=1) analogously denotes a truncated normal
distribution. From these covariates, the target variable 𝑦 is generated following

𝑦𝑘 = 𝑓(𝑥𝑘) + 𝜈𝑘 = 𝑓1(𝑥1,𝑘) + 0.5𝑥2,𝑘 + 𝜈𝑘
with measurement noise 𝜈𝑘 ∼𝒩(𝜇=0, 𝜎=40) and the nonlinearity𝑓1(𝑥1) = 0.1𝑥41 − 0.5𝑥1 + 10.
To the generated data, we will fit the simple linear model

�̂�𝑘 = 𝑓(𝑥𝑘) = 𝜃1𝑥1,𝑘 + 𝜃2𝑥2,𝑘 + 𝜃0.
Furthermore, assume that the target distribution is the uniform distribution over the whole
data space, i.e., 𝑝target(𝑥) = Unif [0,10]×[−3,3](𝑥).
Notice that (in the case of ML estimation and the assumption of Gaussian measurement
noise) this is equivalent to searching for the approximation 𝑓(𝑥) that minimizes the mean
squared error with respect to 𝑓(𝑥) over the whole data space [0, 10] × [−3, 3].
To solve this estimation problem, we employ simple importance-weighted least squares

(IWLS) estimation, which, as discussed in section 2.2.2, coincides with the
importance-weighted maximum likelihood (IWML) solution (assuming Gaussian
measurement noise) and, thus, importance-weighted empirical risk minimization
(IWERM). Either WLS (see section 2.2.2) or the WRTS (algorithm 8, with 𝐴 = 𝐼 and Σ𝜂 = 0)
can be employed; both yield identical results. The data generation process and subsequent
estimation are repeated 1000 times in order to be able to quantify the bias and variance of
the different estimators. Figure 6.4 shows one realization of the data as well as the average
results of the OLS, exact IWLS, and approximate IWLS estimators, compared to the ideal
solution. Here, “exact” refers to the use of the exact importance weights

𝑤∗(𝑥) = 𝑝target(𝑥)𝑝train(𝑥) = Unif [0,10]×[−3,3](𝑥)Γ[0,10](𝑥1 ∣ 2, 1) ⋅𝒩[−3,3](𝑥2 ∣ 0, 1) .
This is in contrast to the approximate importance weights

𝑤(𝑥) = 𝑝target(𝑥)�̂�train(𝑥) ,
where �̂�train(𝑥) is an approximation to 𝑝train(𝑥) that is obtained from the observed samples
using the method described in section 6.4. As expected, OLS exhibits a small variance but
high bias (due to model mismatch and covariate shift), whereas the two IWLS estimators
are nearly unbiased but have a much higher variance. Approximate IWLS exhibits a slightly
larger bias than exact IWLS but also a significantly smaller variance.
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Figure 6.4 – Left: The dots show one realization of the data (with the effect of 𝑥2 canceled
out, to illustrate the nonlinearity 𝑓1(𝑥1)). The regression lines represent the average result
of the corresponding estimator over 1000 realizations. The “ideal” solution is the one that
minimizes the mean squared error between the estimate and the true response surface over
the target distribution 𝑝target(𝑥) = Unif [0,10]×[−3,3]. Right: Distribution of the estimated
parameter values. The dashed line represents the ideal value, coinciding with the ideal
regression line in the left panel. The boxes show the median and interquartile range, and
the whiskers the min–max range.

6.5.3 Time-varying importance-weighted estimation
This second example is one-dimensional (mainly to simplify visualization) but features the
full combination of covariate shift, model mismatch, and concept drift. We draw𝑁𝑆 = 50000
i.i.d. samples from 𝑥 ∼ Γ[0,8](𝑎=2, 𝑏=1).
From these, measurements are generated following𝑦𝑘 = 𝑓(𝑥𝑘, 𝑡𝑘) + 𝜈𝑘, 𝜈𝑘 ∼𝒩(𝜇=0, 𝜎=10)
with the time-varying nonlinearity𝑓(𝑥, 𝑡) = (0.1 cos(2𝜋𝑡) − 0.3)𝑥4 − 0.5𝑥 + 500 − 490 sin2(2𝜋𝑡),
where 𝑡𝑘 = 𝑘𝑁𝑆 .
Finally, we again assume that the target distribution is the uniform distribution over the
whole data space, i.e., 𝑝target(𝑥) = Unif [0,8](𝑥),
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Figure 6.5 – Left: the nonlinearity 𝑓(𝑥, 𝑡), changing over time and thus exhibiting concept
drift. Right: the training and target densities 𝑝train(𝑥) and 𝑝target(𝑥), as well as an
approximation �̂�train(𝑥) to𝑝train(𝑥) identifiedusing the density estimation scheme described
in section 6.4.

and we fit a simple, time-varying linear model of the form𝑓(𝑥, 𝑡) = 𝜃1(𝑡)𝑥 + 𝜃0(𝑡).
To approximate the training data distribution (which is assumedunknown), we again employ
the method described in section 6.4. Figure 6.5 shows the time-varying nonlinearity 𝑓(𝑥, 𝑡)
as well as the exact and approximated training distribution and the target distribution.
For identifying the time-varying model parameters, the WRTS (algorithm 8) is employed.

We assume the time-varying drift model

⎛⎜⎜⎝
𝜃0,𝑘𝛿0,𝑘𝜃1,𝑘𝛿1,𝑘

⎞⎟⎟⎠ =
⎛⎜⎜⎝
1 1 0 00 1 0 00 0 1 10 0 0 1

⎞⎟⎟⎠ ⋅
⎛⎜⎜⎝
𝜃0,𝑘−1𝛿0,𝑘−1𝜃1,𝑘−1𝛿1,𝑘−1

⎞⎟⎟⎠ + 𝜂𝑘, 𝜂𝑘 ∼𝒩(𝜇=0,Σ=Σ𝜂)
for the model parameters, and the measurement model

𝑦𝑘 = (1 0 𝑥𝑘 0) ⋅ ⎛⎜⎜⎝
𝜃0,𝑘𝛿0,𝑘𝜃1,𝑘𝛿1,𝑘

⎞⎟⎟⎠ + 𝜈𝑘, 𝜈𝑘 ∼𝒩(𝜇=0,Σ=Σ𝜈).
We parameterize the noise covariance matrices in terms of a vector 𝜓 of hyperparameters as

Σ𝜂(𝜓) = ⎛⎜⎜⎝
0 0 0 00 Σ𝜂𝛿,11 0 Σ𝜂𝛿,120 0 0 00 Σ𝜂𝛿,21 0 Σ𝜂𝛿,22

⎞⎟⎟⎠
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where Σ𝜂𝛿(𝜓) = (Σ𝜂𝛿,11 Σ𝜂𝛿,12Σ𝜂𝛿,21 Σ𝜂𝛿,22) = 𝐿𝖳(𝜓)𝐿(𝜓)
with 𝐿(𝜓) = (𝜓1 𝜓20 𝜓3)
and Σ𝜈(𝜓) = 𝜓24 .
Finally, we determine the weighted prediction error-optimal set of hyperparameters

�̂�IWPEM = argmin𝜓
𝑁𝑆∑
𝑘=1𝑤𝑘 (𝑦𝑘 − 𝐶𝑘 �̂�𝑤−𝑘 (𝜓))2

as per section 6.3. The optimization is solved numerically in two steps. First, a latin
hypercube search is performed at 100 points to find a good starting point for the following
optimization step. Second, the Matlab patternsearch solver is used, which implements a
variant of generalized pattern search [2, 51], a derivative-free direct (“black-box”) search
method. Each function evaluation during the optimization procedure necessitates a full
WRTS run. (Notice that the optimization problem exhibits many local minima, whence
local solvers converge towards distinctly suboptimal solutions for this problem.)
Figure 6.6 shows the simulated data as well as the estimation results. The IWPEM-optimal

IWRTS closely tracks the ideal parameters, with only a small difference between the results
obtained using ideal importance weights and those obtained using approximate weights.
For comparison, estimation results using the same model but unweighted PEM-optimal
hyperparameters and an unweighted RTS are also shown (PEM-RTS), which are starkly
disturbed.

6.6 Discussion & outlook
In this chapter, a novel and fully probabilistic method for performing regression in the face
of model mismatch, covariate shift, and concept drift has been described. To this end,
weighted versions of the linear Kalman filter and Rauch-Tung-Striebel smoother have been
derived, and it has been shown that they solve a structural importance-weighted empirical
risk minimization problem. The optimal hyperparameters are obtained from solving an
importance-weighted maximum likelihood estimation problem, which can similarly be
understood as an importance-weighted empirical risk minimization problem. To estimate
the importance weights, a simple yet efficient multivariate density estimation scheme has
been described. The efficacy of the proposed methodology for obtaining time-varying
parameter estimates under model mismatch, covariate shift, and concept drift has been
demonstrated in two numerical examples. To the author’s knowledge, no method has been
described previously that treats this complex setting, although a few methods have been
described in the literature that treat classification under the same assumptions [19, 26, 29,
54], often in a rather ad-hoc fashion.
As is typically the case for importance-weighted methods [7, 8, 28, 45], the estimators

proposed here suffer from increased variance as compared to the classical, uniformly
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Figure 6.6 – Signals related to the numerical example described in section 6.5.3.
(Unweighted) prediction error-optimal Rauch-Tung-Striebel smoother (PEM-RTS),
importance-weighted prediction error-optimal weighted Rauch-Tung-Striebel
smoother (IWPEM-IWRTS). Exact IWPEM-IWRTS uses the exact importance weights𝑝target(𝑥)∕𝑝train(𝑥), whereas approximate IWPEM-IWRTS uses the estimated weights𝑝target(𝑥)∕ �̂�train(𝑥).
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weighted estimators; this is an artifact of the high weights assigned to individual (rare)
samples and is simply the price paid for the reduction in estimator bias. For the same
reason, the success of importance-weighted estimation schemes hinges in large parts on the
correctness of the weight specification [8, 24, 28]. Here, in contrast to most of the literature
on importance weighting, we assumed the target distribution 𝑝target(𝑥) to not be descriptive
of some actual observable distribution, but instead to represent a tuning parameter that can
be used to control how well different regions of the data space should be described by the
model. This is akin to frequency weighting in the system identification setting [31, 42], and
there are several settings in which this is a natural perspective, one of which will be the
subject of the following chapter.
Various extensions to the proposed method are conceivable. The method is described here

for regression models that are linear in the model parameters but could be easily extended to
the general nonlinear setting, using, e.g., approximative nonlinear filtering algorithms such
as the one described by Herzog et al. [18]. Other models of concept drift can, of course, be
considered, including models of more sudden drifts. The latter could be realized, e.g., using
the NUV formalism proposed by Loeliger et al. [32]. To choose from multiple competing
model proposals, the model selection method of Shimodaira [45] could be applied. The
state-space setting is also amenable to the classification setting [57]. An extension of the
regression framework described here to the solution of classification problems under model
mismatch, covariate shift, and concept drift thus appears promising and highly relevant
to many practical application scenarios. Finally, whereas the estimators described in this
chapter have been derived thoroughly, a proper analysis of their statistical properties would
be of further interest.
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Chapter 7

Sensor fusion for inferring 𝑃mus

𝑃mus-Pes𝑃aw�̇�𝑉

EMG𝑖EMG𝑑EMG𝑟

Sensor fusion

Performance evaluation

�̂�mus

Figure 7.1 – An illustration of the estimation problem to be solved in this chapter. The
airway pressure 𝑃aw and airflow �̇� are standard measurements provided by any mechanical
ventilator, and𝑉 is obtained by running integration of �̇�. Three EMG channels are recorded
as described in section 3.3.3, cardiac artifacts removed, and their envelope signals EMG
calculated. From these measurements, the pressure 𝑃mus generated by the respiratory
muscles shall be estimated continuously. For validation purposes, esophageal pressure 𝑃es
was also measured using an esophageal catheter and balloon. From this, the gold standard
estimate 𝑃mus-Pes of 𝑃mus is calculated, which will be used for performance evaluation. The
drawing of the human torso has been created and kindly provided by Jan Graßhoff.
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7.1 Problem definition & state of the art

During respiration, the respiratory muscles generate a pressure (𝑃mus), which
acts on the pleural cavity to force air in and out of the lungs. This penultimate chapter

of this thesis addresses the problem of estimating that pressure in mechanically ventilated
patients based on surface EMG measurements. In recent years, it has become more and
more apparent that monitoring 𝑃mus in mechanically ventilated patients is crucial to
prevent diaphragm atrophy due to misuse, diaphragm injury due to overuse, self-inflicted
lung injury due to excessive strain on the lungs, and patient-ventilator asynchrony [13, 34,
78]. The currently available gold standard measurement, esophageal pressure 𝑃es, requires
the (invasive) insertion of an esophageal catheter, a procedure that is uncomfortable for the
patient, error-prone, and expensive. Surface electromyography of the respiratory muscles
represents one possible solution for monitoring the patient’s respiratory activity
noninvasively, but it does not directly yield a measure of the pressure generated by the
patient due to patient-specific signal scaling factors. The aim of the present chapter is to
present an algorithm that estimates the pressure 𝑃mus generated by a patient under
mechanical ventilation by fusing surface electromyographic measurements with pneumatic
measurements from the mechanical ventilator.
This chapter draws heavily on the physiological background, mathematical models, and

inference algorithms developed in the previous chapters. A family of probabilistic inference
algorithms is derived, which is tailored to the specific characteristics and challenges posed
by this particular estimation problem of high clinical importance. Section 7.1 opens the
chapter with a precise statement of the problem at hand, and with brief overviews of
existing research on the observation of respiratory activity in mechanically ventilated
patients, both with and without EMGmeasurements. The subsequent section 7.2 provides
an overview of the approach that is pursued in the following, as well as the challenging
properties of the arising inference problem. In section 7.3, physiological models will be
developed, identified using real patient data, and their performance compared. These
models are then used as part of an algorithm to identify the respiratory pressure generated
by a patient under mechanical ventilation, based on both pneumatic and electromyographic
data. This algorithm is presented in section 7.4. It is then validated using intensive care unit
patient data by comparison with a gold standard reference signal in section 7.5, before
section 7.6 concludes the chapter with a discussion and an outlook.1

7.1 Problem definition & state of the art
Section 7.1.1 briefly defines the exact estimation problem under consideration in this
chapter. The following section 7.1.2 then provides a short overview of existing methods for
quantifying the respiratory effort of patients under mechanical ventilation, based on
1Aspects of this chapter have been the subject of a number of previous journal and conference publications
as well as patent applications [26–29] (co-)authored by the author. Graßhoff, Petersen, et al. [36] discuss
an algorithm to remove cardiac artifacts from the 𝑃es signal, and Graßhoff, Petersen, et al. [35] describe an
automated method to obtain 𝑃mus-Pes from 𝑃es measurements. This signal is used as a ground truth validation
signal in this chapter. Petersen et al. [62] describe, for the first time, amodel-basedmethod for estimating 𝑃mus
from surface EMG measurements. The method presented in this chapter represents a significantly more
developed version of the same fundamental approach, which is also validated much more comprehensively.
Finally, Graßhoff, Petersen, et al. [37] present an extensive quantitative analysis of the relationship between
respiratory surface EMG measurements and 𝑃mus. The specific analyses and algorithms presented here have
not been described elsewhere.
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pneumatic measurements. Since the solution approach pursued in this chapter is based on
respiratory surface EMG measurements, section 7.1.3 then specifically examines the
existing literature on the use of surface EMGmeasurements for respiratory monitoring.

7.1.1 Problem definition
The problem under consideration in this chapter is illustrated in fig. 7.1: given both
pneumatic as well as electromyographic measurements obtained from a patient under
mechanical ventilation, the task is to identify the pressure 𝑃mus generated by the patient at
each time. As pneumatic measurements, the airway pressure 𝑃aw, the airflow �̇� in and out
of the lungs, as well as a measure 𝑉 of the volume currently contained in the lung are
available. As electromyographic measurements, the envelope signals of differential
measurements of intercostal muscle activity (EMG𝑖), diaphragmatic muscle activity
(EMG𝑑), and rectus abdominis muscle activity (EMG𝑟) are obtained. The obtained
estimate �̂�mus is verified by comparison with a gold standard reference signal 𝑃mus-Pes, which
is obtained from an esophageal pressure measurement using an esophageal catheter.

7.1.2 Pneumatic measures of respiratory effort
For more than a century [7, 8] it has been known that pressure deflections in the pleural
cavity reflect, in part, the pressure generated by the respiratory muscles. Since the
measurement of that pressure requires a puncture of the pleural cavity, the measurement of
esophageal pressure 𝑃es has been employed as a surrogate measurement in respiratory
research for many decades [21, 23], although it has only more recently been translated into
clinical practice [5]. To measure esophageal pressure, an esophageal catheter with an
attached balloon and pressure transducer is administered to the patient. The balloon must
subsequently be precisely positioned such that the pressure inside it approximates the
pressure in the pleural cavity well [5, 18]. The resulting esophageal pressure measurement𝑃es reflects not only the pressure generated by the respiratory muscles but also the elastic
recoil pressure of the chest wall due to variations in lung volume, as well as cardiac
artifacts [5]. Thus, further (model-based) signal processing is required to reliably extract an
estimate 𝑃mus-Pes of the pressure generated by the respiratory muscles from 𝑃es, see, e.g.,
Graßhoff, Petersen, et al. [36] and Graßhoff, Petersen, et al. [35]. While esophageal pressure
measurement represents the current clinical gold standard for measuring the pressure
generated by the respiratory muscles, its drawbacks are readily apparent: the use of an
esophageal catheter is invasive and uncomfortable for the patient, and the correct
positioning of the esophageal balloon requires a skilled operator [39, 60].
Owing to the shortcomings of 𝑃es measurements, noninvasive alternatives have been

sought after for decades, and many potential solutions have been proposed. Virtually all of
them are fundamentally based on the respiratory equation of motion2𝑃aw,𝑘 + 𝑃mus,𝑘 = 𝑅�̇�𝑘 + 𝐸𝑉𝑘 + 𝑃0, (7.1)

which can be derived from the classical linear single-compartment model of the respiratory
system (see section 3.2). The airway pressure 𝑃aw, the airflow �̇�, and the lung volume 𝑉 are
2Throughout this thesis, we define 𝑃mus as the negative of the pressure generated by the respiratory muscles,
i.e., it is positive when a negative pressure is generated (typically during inspiration). This definition enables
an intuitive interpretation in terms of respiratory effort exerted by the patient.
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usually available asmeasurements from themechanical ventilator, whereas the pressure𝑃mus
generated by the patient, the airway resistance 𝑅, the respiratory system elastance 𝐸, and the
constant offset 𝑃0 are unknown and patient-specific, and thusmust be estimated. If estimates
for 𝐸, 𝑅, and 𝑃0 are available (methods to obtain such estimates will be discussed in the next
paragraph), eq. (7.1) can be rearranged to yield an estimate of 𝑃mus since𝑃mus,𝑘 = 𝑅�̇�𝑘 + 𝐸𝑉𝑘 + 𝑃0 − 𝑃aw,𝑘. (7.2)

In the absence of any additional measurements, assumptions, or constraints, eq. (7.1) is
clearly under-determined due to the unknown source term 𝑃mus,𝑘. Possibly the simplest
proposed solution is to estimate 𝐸 and 𝑅 during phases in which the patient is known (or
expected) to be fully passive, i.e., 𝑃mus ≡ 0, and then reuse those estimates during phases
with patient activity [43, 89]. In the case that 𝑃mus ≡ 0, eq. (7.1) reduces to a simple linear
regression problem that can be solved for 𝑅, 𝐸, and 𝑃0 using, e.g., ordinary least squares.
Patient passivity is usually ensured either because the patient is sedated or by increasing the
pressure support to a high level for a brief period of time [43, 89]. This method, however, has
recently been found to yield inaccurate estimates of 𝑃mus [61]. It appears likely that at least
the following two closely related factors contribute to the observed inaccuracy:

1. The model (7.1) is subject to significant model errors in describing the respiratory
system [9]. Thus, even if some set of “optimal” model parameters were known,3 the
reconstructed 𝑃mus signal would still be subject to significant errors.

2. Since the model (7.1) represents a stark simplification of reality, its model parameters
must not be understood as a precise quantification of actual physical properties of the
respiratory system [9]. Rather, they represent a linearization of a complex, nonlinear,
time-varying system and are thus dependent on the patient–ventilator system’s current
set point. In other words, model parameters determined during phases of patient
passivity are likely not directly transferable to other set points, i.e., other ventilator
settings or patient activity levels.

An alternative and very popular solution approach that partially alleviates at least the
second problem is to use airway occlusions [14, 31]. An airway occlusion denotes a brief
intervention during which no air can flow to or from the patient, i.e., �̇� = 0 is enforced.
Occlusions can be performed either at the end of an inspiration [31, 61, 70], at the end of
an expiration [14], or very briefly at the beginning of a new inspiration (“P0.1”) [79]. It has
been demonstrated that the airway pressure drop during such occlusions is well-correlated
with measures of average respiratory effort [14, 70, 79]. Thus, occlusion maneuvers are well
suited to detect excessively high inspiratory effort [14, 61, 70], i.e., classify patients as at-risk
ornot. At the same time, however, occlusionmaneuvers donot enable accuratemeasurement
of 𝑃mus due to strong measurement bias and variance [14, 61, 70]. One source of errors is
expiratory activity, which biases the occlusion pressure measurement, and which cannot
be reliably detected during end-inspiratory occlusions [77]. More fundamentally, occlusion-
based methods do not enable a continuous measurement of 𝑃mus, or the identification of a
model of the respiratory system. They are limited to occasionalmeasurements at discrete time
points and are thus unsuitable for, e.g., proportional support ventilation [46, 65]. Moreover,
3A definition of optimality in this context will be the subject of later sections of this chapter.
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Chapter 7 Sensor fusion for inferring 𝑃mus
the (recurring) use of long occlusion maneuvers is, of course, uncomfortable and distressful
for the patient.

As an alternative, although also occlusion-based approach, Younes et al. [91] proposed to
approximate the passive elastance 𝐸 from the airway pressure measured during brief,
end-inspiratory occlusions in the proportional assist ventilation (PAV) mode. In this
ventilation mode, the patient is very likely to be passive at the end of inspiration, thus
effectively guaranteeing that the effect of 𝐸 in eq. (7.1) can be observed in isolation. With 𝐸
known, 𝑅 can then also be estimated during the same time points, still assuming 𝑃mus ≡ 0
at these times [90]. This estimation procedure is commercially available in the PAV+
ventilation software (Puritan Bennett, Medtronic); however, it is only applicable in this
specific ventilation mode [92]. From 𝐸 and 𝑅, a continuous estimate of 𝑃mus can then in
principle be calculated using eq. (7.2). This signal has been shown to attain only limited
agreement with gold-standard 𝑃mus-Pes, however [6]. Similarly to the method of Younes et al.
[91], Kondili et al. [48] proposed a method that automatically identifies expiratory segments
during which the patient appears to be passive and estimates 𝑅 and 𝐸 during these
segments. The pressure 𝑃mus can then, again, be estimated continuously using eq. (7.2).
This method is not limited to the PAV+ ventilation mode, and its results showed acceptable
agreement with the gold standard 𝑃mus-Pes, although the method’s limits of agreement were
still relatively high. While proportional ventilation can benefit the patient even if 𝐸 and 𝑅
(and, thus, 𝑃mus) cannot be measured accurately [93], this discrepancy becomes problematic
once a target level of 𝑃mus is used to automatically titrate the support level [6, 20].
Over the course of the last 15 years, various researchers have attempted to mitigate the

underdetermination of (7.1) following a different approach: by making assumptions on the
time course of 𝑃mus. This can be understood as considering 𝑃mus in eq. (7.1) an unknown
disturbance and assuming a specific structure of the disturbance’s covariance matrix.
Redmond et al. [68], Saatci and Akan [71], and Vicario et al. [84] all assume simple,
parametric models for the time course of 𝑃mus in individual breaths; Scheel et al. [72]
assume a simple, second-order dynamic oscillator model for 𝑃mus. The parameters of these𝑃mus models, along with 𝑅 and 𝐸, are then fit on each individual breath using least squares
estimation or recursive filtering. In a slightly different vein, Vicario et al. [83, 84] describe a
method that assumes simple monotonicity constraints on the time course of 𝑃mus, thus not
prescribing a particular (polynomial) time course of 𝑃mus. All of these approaches generally
result in nonlinear estimation problems. A large number of similar methods has been
compared by Rehm et al. [69] with respect to their accuracy in estimating the elastance 𝐸 in
different patients and under varying conditions; the authors find the polynomial 𝑃mus
model proposed by Redmond et al. [68] to perform best in their comparison. Importantly,
this family of methods is not dependent on any specific types of maneuvers being
performed, and is thus (in theory) applicable to ventilation data obtained using any
mechanical ventilator in any ventilation mode. To the author’s knowledge, none of these
methods has been evaluated in a sufficiently large clinical cohort with respect to their
accuracy in estimating 𝑃mus. Owing to their very nature, all of these methods are vulnerable
to deviations of 𝑃mus from the stated assumptions, e.g., due to irregular breathing,
patient-ventilator asynchrony, or expiratory muscle activity. Another drawback is that they
can result in high breath-by-breath parameter estimate variability since they estimate
parameters anew on each breath [69].
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7.1.3 Electromyographic measures of respiratory effort

Electromyographic measurements have been employed for respiratory monitoring in
humans for at least 70 years. In 1951, Tokizane et al. [81] reported on the use of needle
EMG measurements of various respiratory muscles for investigating the neural control of
respiration. Possibly the first description of esophageal EMG measurements—obtained by
inserting a catheter equipped with specialized electrodes into the esophagus—has been
provided by Petit et al. [63] in 1960. And, finally, Prechtl et al. [66] may have contributed the
first description of a surface (sometimes also called transcutaneous) EMGmeasurement of
the respiratory muscles in 1977. Significant advances in signal processing methodology [25,
53, 58] (also see chapters 4 and 5) and electronics in recent decades have enabled more and
more successful translation of EMG-based methods into clinical research and application.
The esophageal EMG measurement technique was further refined, popularized, and
ultimately commercialized by Sinderby et al. [75], resulting in the Servo-i ventilator
(Getinge) and the neurally adjusted ventilatory assist (NAVA) ventilation mode [74]. Using
this ventilation mode, patients receive ventilatory support in proportion to their own
breathing efforts (as measured by esophageal EMG). Surface EMG
measurements—generally preferable due to their noninvasiveness and capability to
monitor respiratory muscles other than the diaphragm, but also more challenging to
process—have now become a standard tool for monitoring patient-ventilator
interactions [19, 49, 85], and respiratory activity of mechanically ventilated patients more
generally [2, 47, 51].
Aside from monitoring the timing and relative levels of a patient’s respiratory activity, an

increasing number of publications address the problem of inferring 𝑃mus from EMG
measurements. To this end, some kind of patient-specific neuromechanical conversion
must be performed, mapping electromyographic activity to mechanical pressure generation.
The first steps in this direction were undertaken by Bellani et al. [10, 11], who analyzed the
relationship between 𝑃mus-Pes and esophageal EMG measurements. They found the two
signals to be highly correlated and related by a simple conversion factor which could be
determined during end-expiratory occlusions. During these occlusions (see eq. (7.1)),𝑃aw,𝑘 = 𝑃mus,𝑘 + 𝑃0,
and assuming 𝑃mus,𝑘 = 𝛼EMG𝑘 + 𝑃EMG, (7.3)

the conversion factor 𝛼 can be easily determined using, e.g., linear regression, or
considering the ratio of the maximum amplitude of the 𝑃aw and EMG signals during the
occlusion. With 𝛼 estimated, eq. (7.16) can then be employed to obtain a continuous
estimate of 𝑃mus throughout normal ventilation. Later, Jansen et al. [45] analyzed the same
setting—attempting to estimate 𝑃mus from esophageal EMG—and found single occlusion
maneuvers to yield highly variable estimates of 𝛼, i.e., the repeatability was low.
Aggregating data from multiple occlusions improved repeatability. Using the same method
as in their earlier work on esophageal EMG, Bellani et al. [12] analyzed the estimation of𝑃mus-Pes from surface EMG measurements, again based on identifying 𝛼 during
end-expiratory occlusion maneuvers. Their results indicated, for the first time, that
estimating 𝑃mus-Pes completely noninvasively in this way is, indeed, feasible.
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Chapter 7 Sensor fusion for inferring 𝑃mus
Promising as these results are, the method of Bellani et al. [12] also exhibits a number of

opportunities for further enhancement. Most importantly, it only makes use of a tiny
fraction of the available data: firstly because parameter estimation is performed only during
occlusions, ignoring all other ventilation phases, and secondly because 𝑃mus is estimated
only from the EMG, ignoring all other available measurement signals (𝑃aw, �̇�, 𝑉). The low
repeatability observed by Jansen et al. [45], the need for aggregated analyses as performed
by Bellani et al. [12], and sometimes rather noisy 𝑃mus estimates (since 𝑃mus is directly
proportional to the—often noisy—EMG measurements) are all consequences of this
methodological limitation. It appears plausible that a well-conceived sensor fusion
procedure should be capable of combining all available information in an efficient way to
obtain a more reliable estimate of 𝑃mus, all while not relying on any particular kind of
identification maneuver being performed and still entirely noninvasively. In particular, it
should be possible to combine the purely pneumatic approaches discussed in the previous
section, which are based on the equation of motion (7.1), with the EMG-based approaches
discussed in this section. Precisely such a procedure is proposed, evaluated, and discussed
in the remainder of this chapter.
Finally, notice that there is, of course, an expansive and old body of research on muscle

force estimation from surface EMG measurements in non-respiratory settings [24, 41, 42, 54,
56, 59, 64]. These developments are largely analogous to the present respiratory setting:
joint biomechanics take the role of respiratory mechanics, and unknown internal joint
forces take the role of the unknown pressure 𝑃mus. As this connection appears to be largely
unexploited, it may serve as a valuable inspiration. Reliable and continuous estimation of
internal forces from surface EMGmeasurements remains a challenging problem, however,
due to the complexity of the involved biomechanics.

7.2 Outline: the estimation problem, its characteristics, and the
proposed framework

Briefly recalling section 7.1.1 and fig. 7.1, the problem to be solved is this: given
measurement time series of the airway pressure 𝑃aw, airflow �̇� and its integral, the current
lung volume 𝑉, and one or multiple EMG channels4 EMG, estimate the time course of the
pressure contribution 𝑃mus generated by the respiratory muscles of the patient.

7.2.1 Dataset

Throughout this chapter, all analyses are based on study dataset B, described in more detail
in section 3.3.3, and based on data recorded and kindly provided by Bellani et al. [12].
Briefly, eleven recordings from nine different intensive care patients are used, which
comprise standard pneumatic measurements (𝑃aw, �̇�, 𝑉), 𝑃es-based 𝑃mus estimates (𝑃mus-Pes)
as well as three channels of raw respiratory surface EMG measurements (EMG𝑖, EMG𝑑,EMG𝑟). The EMG signals are preprocessed using a simple gating algorithm for removing
cardiac interference, and the weighted moving average absolute value is calculated to yield

4While in this thesis only surface measurements are considered explicitly, the methodology described should
apply equally well to invasive measurements, i.e., measurements of EAdi.
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a simple envelope signal. All data are synchronized and sampled at a frequency of𝑓𝑠 = 100Hz. For more details, refer to section 3.3.3.
7.2.2 Characteristics of the estimation problem

The stated estimation problem is characterized by several important properties that render
it challenging, both practically as well as theoretically:

Unsupervised estimation. There are patient-specific parameters to be inferred anew in
each patient. No reference measurements are available for these, i.e., the estimation
problem is unsupervised.

Time-varying estimation. The properties of the patient’s respiratory system change over
time, thus necessitating an adaptive estimation procedure.

High inter-patient variability. Patients present with different medical and physical
conditions, treatments, and respiratory behavior, see table 3.2 for an overview of
patient characteristics and fig. 7.2 for extracts from two exemplary and quite different
recordings.

Outliers and artifacts. Measurements are taken from real human patients under
intensive care and are thus subject to a large number of unknown disturbances and
measurement artifacts. Any successful estimation procedure must be highly robust to
such disturbances.

Model mismatch. The airways, the lungs, the pleural cavity, the rib cage, and the various
respiratory muscles form a highly complex nonlinear system with many interacting
components and degrees of freedom, very few of which are observable using the
available measurements. Thus, any model based on these measurements is highly
likely to be subject to model mismatch. Moreover, the presence of strong outliers and
various artifacts (see the previous point) renders the formulation of a correct noise
model very challenging, thus further contributing to model mismatch.

Covariate shift. The recorded datasets are typically subject to covariate shift in the
following sense: Most of the time, the patient breathes normally and repetitively, with
little breath-by-breath variation in the recorded waveforms, exploring only a small
region of the data space. Occasionally, specific respiratory maneuvers are
performed—e.g., occlusions or inspiratory-hold maneuvers—or the patient breathes
irregularly in some sense. These sections are rare, but they may hold important
(complimentary) information about the patient’s respiratory system. Thus,𝑝train(𝑥) = 𝑝train(�̇�𝑘, 𝑉𝑘,EMG𝑖𝑘,EMG𝑑𝑘 ,EMG𝑟𝑘) is highly imbalanced (with an
emphasis on frequent, “normal” breaths). On the other hand, 𝑝target(𝑥) might, for
instance, be something like a uniform distribution over a suitably selected region of
the data space: we may want the learned model to describe the behavior of the
patient’s respiratory system equally well in a selected range of conceivable situations,
not simply the most frequent breath type. (Otherwise, we risk overfitting to standard
breaths and ignoring additional information granted by occasional unusual breaths.)
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Figure 7.2 – Two exemplary extracts of recordings from two patients in study B. The two
patients show widely differing breathing patterns and signal waveforms.

Small evaluation study sample size. Research studies with new measurement
methodology in the intensive care setting are notoriously challenging to conduct, thus
limiting the typically available study sample size. While the small patient population
studied here (nine patients) is certainly not the upper limit, other groups studied
populations of 41 [12] and 31 [45] patients, thus still clearly within the small-data
regime. This limits the kind of analyses and model selection procedures that can be
performed.

Medium-sized subject-level datasets. While certainly not in the realm of „Big Data“,
the datasets recorded for individual patients consist of some tens of thousands of
measurement samples for at least seven measurement signals (𝑃aw, �̇�, 𝑉, 𝑃mus-Pes,EMG𝑑, EMG𝑖, EMG𝑟). This yields a dataset size that is large enough to cause
computation time and memory efficiency to become relevant concerns, especially
when considering prospective real-time application on an embedded medical device.
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𝑃mus Dynamics
𝑃mus
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Pneumatic Measurements
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Figure 7.3 – A factor graph modeling the general structure of the sensor fusion problem
considered in this chapter. Three sources of information about 𝑃mus are exploited: (1) the
pneumatic measurements 𝑃aw, �̇� and𝑉, which are related to 𝑃mus via a model of respiratory
mechanics, (2) surface EMGmeasurements of the respiratory muscles, which are related to𝑃mus via a model of the EMG-𝑃mus relationship, and (3) a model of the dynamical behavior
of the signal 𝑃mus(𝑡) itself. Ellipses denote variables and rectangles denote the constituting
factors of the joint probability density function of these variables.

7.2.3 Overview of the proposed solution
As a solution to the described estimation problem, we propose a novel sensor fusion method
that combines three sources of information about the 𝑃mus(𝑡) signal:

1. the pneumatic measurements 𝑃aw, �̇�, and 𝑉, which are connected to 𝑃mus via a model
of respiratory mechanics,

2. the electromyographic envelope signalsEMG𝑖,EMG𝑑, andEMG𝑟, which are connected
to 𝑃mus via an electro-mechanical coupling model, and

3. prior knowledge about the dynamical behavior of the signal 𝑃mus(𝑡) itself.
Figure 7.3 shows a factor graph [57] that visualizes the connections between these different
sources of information. To increase robustness to outliers and artifacts, all signals are
subjected to preprocessing, smoothing, and simple (mostly threshold-based) artifact
rejection procedures. In order to counter the combination of model mismatch and dataset
imbalance, we employ the importance-weighted, time-varying estimation scheme proposed
in the previous chapter. Finally, an estimate �̂�mus,𝑘 is determined by exploiting all available
information. Figure 7.4 shows a block diagram illustrating the main steps of the proposed
estimation scheme. The following section will discuss the choice of models used for the
three components of the sensor fusion procedure in detail before section 7.4 will describe
the technical details of the estimation scheme.

7.3 Model selection & identification
We will now proceed to propose models for each of the three sub-components mentioned
above and in fig. 7.3, namely, respiratory mechanics, the EMG–𝑃mus relationship, and the
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Figure 7.4 – A block diagram illustrating the main processing steps of the proposed, fully
noninvasive estimation scheme. The lower, dashed part depicts the validation processing
path (requiring invasive measurement of 𝑃es).

dynamics of the 𝑃mus signal. The capability of each model component to fit real patient
measurements will be assessed, and several model (hyper-)parameters will be identified.

7.3.1 Modeling respiratory mechanics
The modeling of respiratory mechanics is, by far, the subcomponent that has received the
most comprehensive treatment in the existing literature; a brief overview of the most
prominent modeling choices was provided in section 3.2.3. Here, we will employ a simple
single-compartment model with a linear-quadratic resistance and a linear elastance, as
described in eqs. (3.6), (3.7) and (3.9) in section 3.2.3. The resulting respiratory equation of
motion reads 𝑃aw = 𝑅1�̇� + 𝑅2|�̇�|�̇� + 𝐸𝑉 − 𝑃mus + 𝑃0. (7.4)

Many more complex model variants were evaluated during the writing of this thesis but
yielded similar or worse estimator performance. These variants are not further discussed
here, in the interest of brevity. The only further model variant that will be evaluated in the
following is the one with an additional, quadratic elastance term, i.e.,𝑃aw = 𝑅1�̇� + 𝑅2|�̇�|�̇� + 𝐸1𝑉 + 𝐸2𝑉2 − 𝑃mus + 𝑃0. (7.5)

To assess the capability of the proposed models of respiratory mechanics to describe real
patient data, the model (7.4) was fit to all available study recordings by computing the
ordinary least squares (OLS)–optimal parameter values in𝑃aw,𝑘 + 𝑃mus-Pes,𝑘 = 𝑅1�̇�𝑘 + 𝑅2|�̇�𝑘|�̇�𝑘 + 𝐸𝑉𝑘 + 𝑃0 + 𝜀RM,𝑘, (7.6)

i.e., the values 𝜃∗RM = (𝑅∗1 𝑅∗2 𝐸∗ 𝑃∗0)𝖳
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Figure 7.5 –Exemplaryfits of the respiratorymechanicsmodel (7.4) (purple) and the electro–
mechanical model (7.8) (red) to 𝑃mus-Pes (blue).

that minimize the sum of the squared residuals 𝜀2RM,𝑘 in eq. (7.6). In order to account for the
(potential) temporal variability of the model parameters, fitting was performed on snippets
of 30 s length, excluding any snippets that contained less than 20 s of usable data. In addition,
to minimize the negative impact of measurement artifacts on the noise estimates, snippets
were discarded if either of the following two conditions was met:

• There were extremely large parameter value differences as compared to the previous
snippet. More precisely, snippet 𝑗 is rejected if a) there aremore than three pairs of valid
adjacent snippets (𝓁,𝓁 + 1) between which parameters can be compared, b) the 0.95–
quantile of the absolute values of the parameter differences between the pair of snippets
is larger than three times the median of those absolute differences in all parameters,
and c) the absolute values of all parameter differences in snippet 𝑗 (as compared to the
previous snippet 𝑗−1) are larger than the 0.95–quantile of the corresponding absolute
parameter difference distribution.

• The residuals were exceptionally large. More precisely, snippet 𝑗 is rejected if a) there
are more than three snippets with more than 20 s of data, b) the 0.95–quantile of the
mean absolute residual valueswithin each snippet is larger than three times themedian
of thosemean absolute residuals, and c) themean absolute residual in snippet 𝑗 is larger
than the 0.95–quantile of the mean absolute residuals.

Figure 7.5 shows two exemplary snippets from two recordings and the results of the model
fitting procedure. It is apparent that the model (7.4) is capable of achieving a reasonably
good fit to these data. Figure 7.6 shows the model residuals 𝜀RM,𝑘 as a function of both �̇�
and 𝑉 in all eleven available recordings, indicating that there is no significant structural
dependency that is not exploited by the model. This, of course, does notmean that the model
is identifiable using EMGmeasurements instead of 𝑃mus-Pes, however.
With the outlier snippets rejected and themodel parameters determined, the variance ΣRM

of the residuals 𝜀RM,𝑘 can then be calculated. Figure 7.7 shows box plots of the residual
variances observed in all eleven recordings using both the models (7.4) and (7.5); the median
(taken across recordings) standard deviations are 0.7102mbar and 0.7048mbar, respectively.
Moreover, from the trajectories of the parameter values across multiple 30 s-snippets, an
estimate of the variances of the parameter changes can also be obtained as follows: assuming
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Figure 7.6 – Residual analyses of the model of respiratory mechanics in eq. (7.4) and the
EMG–𝑃musmodel in eq. (7.8). The two top panels show the residual of the pneumatic model
(7.6) as a function of the airflow �̇� and lung volume 𝑉; the bottom panel shows the residual
of the electro-mechanical model (7.8) as a function of EMG𝑑, the main inspiratory EMG
channel. Different colors represent the eleven different available recordings.

a random walk model 𝜃RM,𝑘 = 𝜃RM,𝑘−1 + 𝜂𝑘, 𝜂𝑘 ∼𝒩(0,Σ𝜂)
for the model parameters, the total parameter change over a period of 30 s is given by

∆30 s𝜃RM = 𝜃RM,𝑘 − 𝜃RM,𝑘−30𝑓𝑠 = 𝑘∑
𝑖=𝑘−30𝑓𝑠+1

𝜂𝑖 ∼𝒩(0, 30 ⋅ 𝑓𝑠 ⋅ Σ𝜂),
where 𝑓𝑠 denotes the sampling frequency. Assuming Σ𝜂 to be diagonal, it can thus be
estimated as Σ𝜂 = 130 ⋅ 𝑓𝑠 diag(Var[∆𝑅1],Var[∆𝑅2],Var[∆𝐸],Var[∆𝑃0])
where Var[∆𝑅1] denotes the variance of the observed between-snippet changes in the
parameter estimates 𝑅1, and equivalently for the other parameters. Table 7.1 provides the
median of the standard deviation of the parameter changes across all recordings.

Change
Covariance
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RM RM+𝐸2 EMG EMG+𝜏EMG
00.5
11.5Σ 𝜀

Figure 7.7 – Distribution of the residual variances ΣRM and ΣEMG observed when fitting the
respiratory mechanics models (7.4) (RM) and (7.5) (RM+𝐸2) and the electro-mechanical
model (7.8) without (EMG) and with delay estimation (EMG+𝜏EMG) to the eleven available
recordings. The invasively obtained estimate 𝑃mus-Pes is used for the model fits. Boxes show
the inter-quartile range and the median value; whiskers indicate the min–max range.

7.3.2 Modeling the EMG–𝑃mus relationship
The EMG-𝑃mus relationship is much less widely explored in the literature than respiratory
mechanics. However, several groups of authors have now found very simple, linear models
of the shape 𝑃mus ∝ EMG (7.7)
to describe observed measurements well [12, 37, 62], in line with similar observations in
other muscle groups [30]. To fully exploit the information provided by the three available
measurement channels, we postulate the combined model𝑃mus = 𝛼𝑖EMG𝑖 + 𝛼𝑑EMG𝑑 + 𝛼𝑟EMG𝑟 + 𝑃EMG + 𝜀EMG, (7.8)

where 𝜀EMG denotes the model error. The model (7.8) is consistent with the assumption that𝑃mus = 𝑃EMG𝑖mus + 𝑃EMG𝑑mus + 𝑃EMG𝑟mus , (7.9)

and the linearity assumption (7.7) for the individual muscles. This approach differs from the
approach pursued by Bellani et al. [12], who assumed𝑃mus = 𝛼(EMG𝑖 + EMG𝑑 + EMG𝑠), (7.10)

i.e., requiring the proportionality factors to be identical for all EMG channels. (EMG𝑠
denotes another respiratory EMG channel not used here.) Due to the wildly varying
recording geometry of the different EMG channels, the assumption (7.10) does not appear
plausible. It is also different from the approach pursued by Graßhoff et al. [37], who select
the single most informative channel based on a signal–to–noise ratio calculation and then
proceed using only that channel.
Notice that the model (7.8) is robust to a particular type of electromyographic crosstalk:

assuming that 𝑃mus can be correctly represented as
𝑃mus = (𝛼1 𝛼2 𝛼3) ⎛⎜⎝

𝑠1𝑠2𝑠3⎞⎟⎠ ,
Crosstalk
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Model 𝑅1 𝑅2 𝐸1 𝐸2 𝑃0
RM 1.1612 2.1580 0.9914 — 0.3560

RM+𝐸2 1.0954 2.3169 2.9194 4.6228 0.2739

Model 𝛼𝑖 𝛼𝑑 𝛼𝑟 𝑃EMG
EMG 0.1862 0.3286 1.1831 0.2684

EMG+𝜏EMG 0.1807 0.2410 1.0078 0.2739

Table 7.1 – Median (across the eleven available recordings) of the observed standard
deviation of parameter changes between adjacent 30 s snippets, i.e., √Var[∆30 s𝜃]. The
variances are identified by performing regression against 𝑃mus-Pes in 30 s snippets and
analyzing the differences ∆30 s𝜃 between successive snippets. The analyzed models are
the respiratory mechanics model (7.4) (RM), the same model with a quadratic elastance
term (RM+𝐸2), and the electro–mechanical model (7.8), with (EMG+𝜏EMG) and without
(EMG) delay estimation. Units omitted for brevity; refer to section 3.3.3 for the units of all
signals.

where the 𝑠𝑖 denote muscle activity signals, and assuming further that the three EMG
measurements represent mixtures ⎛⎜⎜⎝

EMG𝑖EMG𝑑EMG𝑟
⎞⎟⎟⎠ = 𝑀 ⎛⎜⎝

𝑠1𝑠2𝑠3⎞⎟⎠
with an invertible mixing matrix𝑀 ∈ ℝ3×3, 𝑃mus can also be represented as

𝑃mus = (𝛼1 𝛼2 𝛼3)𝑀−1𝑀 ⎛⎜⎝
𝑠1𝑠2𝑠3⎞⎟⎠

= (�̃�1 �̃�2 �̃�3) ⎛⎜⎜⎝
EMG𝑖EMG𝑑EMG𝑟

⎞⎟⎟⎠ .
This is of particular interest because often, the EMG𝑟 signal can be used to eliminate
abdominal crosstalk from the EMG𝑑 channel.
To assess the ability of the proposed model in describing clinical measurements, the same

analyses as described in the previous section were performed: the least-squares-optimal
parameters 𝛼𝑖, 𝛼𝑑, 𝛼𝑟 and 𝑃EMG were determined on 30 s snippets by fitting the observed
data to eq. (7.8), using 𝑃mus-Pes as a surrogate for 𝑃mus. Snippet exclusion criteria analogous
to those described in the previous section were applied.
To further improve model fit, all EMG envelope signals were delayed by a constant (and

identical across channels) delay 𝜏EMG: as is well known (see section 3.1.1 and, in particular,
fig. 3.3), there is a nontrivial dynamic relationship between action potential propagation
along a muscle fiber (as picked up by an EMG sensor) and force development (which
ultimately results in a change in 𝑃mus). For this reason, it is customary in the

EMG Signal
Delay
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(non-respiratory) literature to equip models with an EMG–force delay [40, 56, 64]. Here, we
will compare two model variants:

Per-recording EMG signal delay. In this case, the optimal EMG envelope delay 𝜏EMG is
determined for each recording individually, by performingOLS regression for all delays
in a [−200ms, 100ms] range in 10ms increments (resulting in an integer sample shift),
and choosing the delay that yields the lowest sum of squared residuals. The median of
the identified optimal delays across recordings is −100ms. Note the sign: the signals
are shifted “to the left”.

Fixed EMG signal delay. In this case, all EMG envelope signals in eq. (7.8) are delayed by
a fixed delay of −100ms in all recordings.

Notice that a median EMG envelope signal delay of −100ms is not particularly surprising:
the causal envelope calculation (cf section 3.3.3) introduced a processing delay of 125ms that
is mostly compensated for by the identified delay. Moreover, the remaining overall signal
shift of−25ms is within the range of experimentally observed EMG-force delays (see fig. 3.3).
Again, fig. 7.5 shows exemplary model fits and fig. 7.6 the model residuals 𝜀EMG,𝑘 as a

function of EMG𝑑 in all eleven available recordings. It appears that there is no significant
structural dependency that is not exploited by the model. Figure 7.7 shows box plots of the
identified equation error variances ΣEMG across all recordings, both with and without delay
estimation. Themedian residual standard deviation is 0.8358mbar for bothmodels. Table 7.1
provides the median of the standard deviation of the parameter changes across all recordings.
All analyses were performed analogously to those described in the previous section.

7.3.3 Modeling the dynamics of respiratory patient activity
The third and final component of the model, and also the third source of information as
described in fig. 7.3, is themodel of the temporal evolution of𝑃mus(𝑡). Notice that the aimhere
is not to develop a realistic simulationmodel of𝑃mus(𝑡), but rather to identify a simple forward
predictionmodel that conveys some amount of information about generally plausible 𝑃mus(𝑡)
waveforms, and that will be used in the final smoothing step of the estimation procedure.
To obtain this model, we fit a range of model variants to the 𝑃mus-Pes signals of all datasets:

Autoregressive (AR) models of orders 𝑝 = 1, 2, 3, 5, and 10. We will denote these byAR𝑝.
Autoregressive models with exogenous inputs (ARX) and an input–output-delay of 1.

For these models, the flow and volume signals are used as exogenous inputs, i.e., the
model is 𝑃mus,𝑘 = 𝑝∑

𝑖=1 𝑎𝑖 ⋅ 𝑃mus,𝑘−𝑖+1 + 𝑞∑
𝑖=1 𝑏�̇�,𝑖 ⋅ �̇�𝑘−𝑖 + 𝑞∑

𝑖=1 𝑏𝑉,𝑖 ⋅ 𝑉𝑘−𝑖 + 𝜂𝑘,
where 𝜂𝑘 denotes white noise. We will fix 𝑝 = 2 and consider 𝑞 = 1, 2, 3, and we will
denote these models by ARX𝑝𝑞.

State-space (SSM) models of the form𝜃𝑘 = 𝐴 ⋅ 𝜃𝑘−1 + 𝑏�̇� ⋅ �̇�𝑘−1 + 𝑏𝑉 ⋅ 𝑉𝑘−1 + 𝜂𝑘−1, 𝜂𝑘−1 ∼𝒩(0,Σ𝜂)𝑃mus,𝑘 = 𝐶 ⋅ 𝜃𝑘 + 𝜈𝑘, 𝜈𝑘 ∼𝒩(0,Σ𝜈),
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AR1 AR2 ARX21 ARX22 ARX23 AR3 AR5 AR10∆nAIC 3.4939 0.4391 0.4372 0.3873 0.3711 0.4237 0.2262 0.1306𝑛 1 2 4 6 8 3 5 10

SSM𝑎2 SSM2 SSM𝑎3 SSM3 SSM𝑎4 SSM4 SSM𝑎5 SSM5∆nAIC 0.3456 0.2933 0.1738 0.0644 0.1004 0.0035 0.1004 0𝑛 8 12 15 21 24 32 35 45

Table 7.2 – Difference ∆nAIC of normalized AIC (nAIC) values and the minimum nAIC
value observed across all models (achieved by and SSM5), as well as the number of model
parameters (𝑛) of multiple dynamic models of 𝑃mus across all available signal snippets. The
highlighted AR2 model is the one selected for further use.
where𝐴, 𝑏�̇� , 𝑏𝑉 , 𝐶,Σ𝜂, and Σ𝜈 are unknownmatrices to be identified by the algorithm,
as well as autonomous systems of the form𝜃𝑘 = 𝐴 ⋅ 𝜃𝑘−1 + 𝜂𝑘−1, 𝜂𝑘−1 ∼𝒩(0,Σ𝜂)𝑃mus,𝑘 = 𝐶 ⋅ 𝜃𝑘 + 𝜈𝑘, 𝜈𝑘 ∼𝒩(0,Σ𝜈).
Models of order, i.e., state-space dimension, 𝑝 = 2, 3, 4, and 5 are considered, and we
will denote these by SSM𝑝 for the version with inputs, and SSM𝑎𝑝 for the autonomous
version, respectively.

The rationale behind the inclusion of the flow and volume signals as inputs in some of the
models is that— for obvious reasons—both signals are correlated in some way with 𝑃mus(𝑡)
and might thus contain information that can be used to better predict 𝑃mus(𝑡). The AR and
ARX models are fit using the standard (unregularized) least-squares approach implemented
in theMatlab arx function. The SSMmodels are fit using the subspace identificationmethod
implemented in the Matlab n4sid function. In both cases, the cost function is given by the
one-step-ahead prediction error. For details on both estimation methods, refer to Ljung [55].
For selecting a suitable model out of this group, we compare the values of the normalized

Akaike information criterion (nAIC) [3, 4, 55] calculated across all available data from all
patients. Since the absolute value of the (n)AIC conveys no information on model fit—only
the relative values of different models are of interest for their comparison [17])—we subtract
the minimum value observed across all models (the optimum) from all nAIC values, yielding
the performance measure ∆nAIC𝑖 = nAIC𝑖 −min𝑗 nAIC𝑗
for model 𝑖. Table 7.2 provides the results. The best performance is achieved by the SSM5
model, very closely followed by the SSM4 model. However, except for the AR1 model, all
other models attain nearly identical nAIC values. Following a well-known rule of thumb, all
models for which ∆nAIC < 2 “have substantial support” [17]; this is clearly the case for all
models except AR1. Thus, because it is the simplest of the models with similarly low nAIC

Normalized
Akaike
Information
Criterion
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Figure 7.8 – Forward simulation of themodel of 𝑃mus(𝑡) described in eq. (7.11) for the initial
conditions 𝑃mus,𝑘−1 = 𝑃mus,𝑘−2 = 1.

values, we will proceed using the AR2 model in the following. The identified parameters for
that model are𝑃mus,𝑘 = 1.975 ⋅ 𝑃mus,𝑘−1 − 0.9762 ⋅ 𝑃mus,𝑘−2 + 𝜂𝑘, 𝜂𝑘 ∼𝒩(0,Σ𝜂,=2.1314 ⋅ 10−4). (7.11)

Figure 7.8 shows a forward simulation of the model for the initial conditions𝑃mus,𝑘−1 = 𝑃mus,𝑘−2 = 1,
illustrating that the model represents a damped linear oscillator. The model’s frequency
response has its maximum absolute value at an oscillation period of 2.83 s.

7.4 Model-based inference for 𝑃mus in mechanical ventilation

In this section, the proposed algorithm for estimating 𝑃mus from respiratory surface EMG
measurements will finally be described in its entirety. To this end, recall from fig. 7.4 that
the algorithm proceeds in four main stages: preprocessing and artifact removal, importance
weight calculation, time-varying model parameter estimation, and, finally, dynamic 𝑃mus
signal estimation. The algorithm is entirely independent of any invasively obtained
measurements such as 𝑃es. All stages are implemented in an offline fashion here, i.e., all
stages of the algorithm are applied to the full recording before proceeding to the next
algorithmic stage. The different stages of the algorithm will now be detailed in the
following sections.

7.4.1 Preprocessing and artifact removal

As they are not the core topic of this chapter, these steps are only described very briefly here.
A volume signal is obtained by continuous integration of the �̇� measurement signal, with a
simple leakage correction algorithm and baseline removal to prevent the volume signal from
drifting. Measurement artifacts in all signals are detected based on simple thresholds (too
large / too small / too large or small for too long) and rejected.
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7.4.2 Calculation of importance weights

As was mentioned in section 7.2.2, the estimation problem suffers from covariate shift in the
following sense: the distribution 𝑝train(�̇�, 𝑉,EMG𝑖,EMG𝑑,EMG𝑟) is often highly
imbalanced, with a high prevalence of very similar, “normal” breaths. Thus, unweighted (or
equally weighted) estimation will identify model parameters that describe these “normal”
breaths well, possibly at the cost of reduced performance on more rare, unusual breaths.
However, the aim of the parameter identification procedure is not prediction: instead, the
parameters are to be used for inferring the hidden quantity 𝑃mus. Thus, the aim of inference
is to obtain a set of parameters that describes the respiratory system reasonably well under
all relevant circumstances. Towards this aim, we propose the assumption that𝑝target(𝑥) ≈ Unif (𝑥), where the uniform distribution is defined over a suitably restricted
space. In particular, we propose four different importance weighting schemes that will be
evaluated comparatively in section 7.5:

Multivariate density estimation, all data (𝑤mvd). To calculate the importance weights,
the same procedure as used in the previous chapter is employed: the training data
distribution 𝑝train(�̇�, 𝑉,EMG𝑑) is approximated using the multivariate density
estimation scheme described in section 6.5.1, and preliminary importance weights are
then calculated as

�̃�mvd𝑘 = 𝑝target(�̇�𝑘, 𝑉𝑘,EMG𝑑𝑘)�̂�train(�̇�𝑘, 𝑉𝑘,EMG𝑑𝑘) ∝ 1�̂�train(�̇�𝑘, 𝑉𝑘,EMG𝑑𝑘) .
Notice that the two additional EMG signals EMG𝑖 and EMG𝑟 are omitted from the
density estimation and weight calculation in order to reduce the dimensionality of the
estimation problem and because the diaphragm is the main respiratory muscle. As is
usual in the importance-weighting literature (see the discussion in section 6.1.2), we
restrict the maximum weight range in order to limit the effect of density estimation
uncertainties in regions with very few data points and the variance of the estimator (see
fig. 6.4). In particular, we restrict the weight rangemax

(𝑤mvd) ∕min (𝑤mvd) to 100 by
capping any weights larger than 100 ⋅min (�̃�mvd). To further smooth out brief outliers,
the weighting signal is smoothed using a moving median with a window length of100ms and, subsequently, a moving mean with a window length of 500ms.

Multivariate density estimation, excluding steep slopes (𝑤mvd−). These weights are
calculated in the exact same way as the previously described weights 𝑤mvd, with one
difference: samples with large flow or pressure gradients are excluded from the
analyses, and their weights are set to 0 explicitly. The rationale is this: it is known
(see, e.g., fig. 3.6 in Bates [9], and also fig. 7.5) that the classical model is inaccurate
during phases of rapid pressure and flow changes due to various inertial effects. For
the reconstruction of an accurate 𝑃mus model, fitting these transient regions is not
critical, and doing so might lead to worse model performance in describing 𝑃mus.
Technically, we reject any samples for which either d�̇�∕d𝑡 or d𝑃aw∕d𝑡 are greater than
their respective 30 s moving 0.95–quantile or smaller than their respective 30 s
moving 0.05–quantile.

Covariate Shift

Importance
Weighting
Schemes
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7.4 Model-based inference for 𝑃mus in mechanical ventilation
Simple binning (𝑤bin). With the intent of reducing the dependence on accurate density

estimation and at the same time reducing the vulnerability of the weighting scheme to
outliers (which would receive a high weight by the two estimation schemes described
above), an alternative, simple, and robust weighting scheme has been developed. The
aim is to give roughly equal total weight (=number of samples times their weight) to
samples during which the resistive, elastic, and electromyographic components of the
model are well observable in isolation. To this end, first binary significance criteria are
defined for �̇�, 𝑉, and EMG𝑑 as |�̇�| > 0.15 L∕s, 𝑉 > movmedian30 s(𝑉) andEMG𝑑 > 23 movmedian20 s (movmax4 s (movmedian0.2 s (EMG𝑑))).
The weight for samples during which none of the three signals is significant is set to
0, and the weight of all samples during which �̇� is significant is set to 1. Next, the
weight of all samples during which only 𝑉 is significant is increased such that the total
weight on these samples (which is given by the weight times the number of samples)
is equal to the number of samples during which �̇� is significant (which have received
weight 1, see above), with a maximum weight of 100. This step is repeated for the
samples during which only EMG𝑑 is significant. Finally, to smooth out brief outliers,
the resulting weight signal is smoothed using a moving median with a window length
of 0.2 s.

Simple binning, excluding steep slopes (𝑤bin−). Again, these weights are calculated in
the exact same way as the previously described weights 𝑤bin, with one difference:
samples with large flow or pressure gradients are excluded from the analyses, and
their weights are set to 0 explicitly. Cf. the description of 𝑤mvd− above for details.

To analyze the influence of the weighting schemes, the results will also be compared to a
version using standard uniform weighting (𝑤𝟙 ≡ 1).

7.4.3 Estimation of time-varying model parameters
Given the preprocessed signals and the samples weights 𝑤𝑘, we can now proceed to
estimate the time-varying model parameters. For this purpose, the weighted Kalman filter
and smoother described in the previous chapter are employed. For the model parameters
(the dynamical states of the system), we employ the simple random–walk model𝜃𝑘 = 𝜃𝑘−1 + 𝜂𝑘, 𝜂𝑘 ∼𝒩(0,Σ𝜂). (7.12)

For the measurement model, the pneumatic model𝑃aw,𝑘 + 𝑃mus,𝑘 = 𝑅1�̇�𝑘 + 𝑅2|�̇�𝑘|�̇�𝑘 + 𝐸𝑉𝑘 + 𝑃0
and the EMG–𝑃mus model𝑃mus = 𝛼𝑖EMG𝑖 + 𝛼𝑑EMG𝑑 + 𝛼𝑟EMG𝑟 + 𝑃EMG,
are combined to obtain𝑃aw,𝑘 = 𝑅1,𝑘�̇�𝑘 + 𝑅2,𝑘|�̇�𝑘|�̇�𝑘 + 𝐸𝑘𝑉𝑘 − 𝛼𝑖𝑘EMG𝑖𝑘 − 𝛼𝑑𝑘EMG𝑑𝑘 − 𝛼𝑟𝑘EMG𝑟𝑘 + 𝑃0,𝑘 − 𝑃EMG,𝑘⏟⎴⎴⎴⏟⎴⎴⎴⏟∶=�̃�0,𝑘

+𝜀𝑘
(7.13)

Random–walk
Model
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with 𝜀𝑘 ∼𝒩(0,Σ𝜈), which is linear in the model parameter vector𝜃𝑘 = (𝑅1,𝑘 𝑅2,𝑘 𝐸𝑘 𝛼𝑖𝑘 𝛼𝑑𝑘 𝛼𝑟𝑘 �̃�0,𝑘)𝖳 .
A measurement noise standard deviation of

√Σ𝜈 = 1mbar is assumed. An equivalent
formulation (with the additional state 𝐸2,𝑘) can be derived analogously for the pneumatic
model (7.5) with quadratic elastance. Using the state equation (7.12), the measurement
equation (7.13) and the sample weights 𝑤𝑘, the weighted Rauch–Tung–Striebel-Smoother
described in algorithm 8 is used to estimate the time-varying model parameters 𝜃𝑘.
Sequential measurement updates, the Joseph stabilized covariance update, missing data
handling, and state constraints are all implemented as described in section 2.3.1.5
For the process noise covariance Σ𝜂, three different choices will be compared. Firstly, the

process noise can be chosen exactly as determined empirically in section 7.3.1 and
section 7.3.2; this will be termed Σ+𝜂 because it is the highest level of process noise
considered. Secondly, to achieve more stable estimator behavior, a version will be
considered in which the process noise is set to Σ−𝜂 = 10−4 ⋅ Σ+𝜂 . And thirdly, a version
without any parameter variability will also be considered, i.e., Σ=0𝜂 = 0. (In this case, the
Kalman filter and smoother just reduce to static regression, as discussed before.)
Moreover, just like in section 7.3.2, two variants will be compared in the following:

estimation with a fixed, static EMG envelope signal delay of −100ms, and with a
per-recording identification of the optimal delay 𝜏EMG. Here, however, 𝑃mus-Pes cannot be
used, as the algorithm is meant to be fully independent of any invasive measurements. For
this reason, we employ the weighted hyperparameter tuning scheme proposed in
section 6.3, i.e., we use importance-weighted (empirical) prediction error minimization
(IWPEM) and choose the delay as

𝜏∗EMG = argmin𝜏EMG∈ℤ
𝑁𝑆∑
𝑘=2𝑤𝑘(𝑃aw,𝑘 − 𝑅1,𝑘−1�̇�𝑘 − 𝑅2,𝑘−1|�̇�𝑘|�̇�𝑘 − 𝐸𝑘−1𝑉𝑘

+ 𝛼𝑖𝑘−1EMG𝑖𝑘+𝜏EMG + 𝛼𝑑𝑘−1EMG𝑑𝑘+𝜏EMG + 𝛼𝑟𝑘−1EMG𝑟𝑘+𝜏EMG − �̃�0,𝑘−1)2.
The NOMAD solver [1, 52], a mesh-adaptive direct search (MADS) algorithm, is used to
solve this integer optimization problem efficiently. (Note that every cost function evaluation
requires a full Kalman filter and smoother run.)

7.4.4 Estimation of 𝑃mus

Given the time-varying estimates 𝜃𝑘 of the pneumatic and electro-mechanical model
parameters obtained in the previous section, 𝑃mus can now be estimated. To this end,
pneumatic and electro-mechanical model components are now, finally, combined with the
dynamic model of 𝑃mus identified in section 7.3.3. Transforming the autoregressive model
from eq. (7.11) into a state-space representation, we obtain⎛⎜⎝ 𝑃mus,𝑘𝑃mus,𝑘−1⎞⎟⎠ = ⎛⎜⎝1.975 −0.97621 0 ⎞⎟⎠ ⎛⎜⎝𝑃mus,𝑘−1𝑃mus,𝑘−2⎞⎟⎠ + ⎛⎜⎝𝜂𝑘0 ⎞⎟⎠ , 𝜂𝑘 ∼𝒩(0,Σ𝜂=2.1314 ⋅ 10−4). (7.14)
5The following, very permissive constraints are implemented: −100 ≤ 𝑅1, 𝑅2 ≤ 100; 1 ≤ 𝐸 ≤ 100; −50 ≤ 𝛼𝑖 ≤50; 0 ≤ 𝛼𝑑 ≤ 50; −50 ≤ 𝛼𝑟 ≤ 0; −10 ≤ �̃�0 ≤ 30. (Units omitted here for brevity, see section 3.3.3 for the units
of all signals.)
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7.5 Results

Next, we can compute estimates of 𝑃mus from both the respiratory mechanics model (7.4)
and the electro-mechanical model (7.8): from the first, we obtain𝑃RMmus,𝑘 = 𝑅1,𝑘�̇�𝑘 + 𝑅2,𝑘|�̇�𝑘|�̇�𝑘 + 𝐸𝑘𝑉𝑘 + �̃�0,𝑘 − 𝑃aw,𝑘, (7.15)

and from the second, 𝑃EMGmus,𝑘 = 𝛼𝑖EMG𝑖 + 𝛼𝑑EMG𝑑 + 𝛼𝑟EMG𝑟. (7.16)

Here, without loss of generality, the constant offset �̃�0 = 𝑃0 + 𝑃EMG was fully attributed to
the pneumatic component. (As a result, the final 𝑃mus estimate will have an unknown offset.)
Equations (7.15) and (7.16) can now be combined to obtain the measurement equation⎛⎜⎝𝑃

RM
mus,𝑘𝑃EMGmus,𝑘

⎞⎟⎠ = ⎛⎜⎝1 01 0⎞⎟⎠ ⎛⎜⎝ 𝑃mus,𝑘𝑃mus,𝑘−1⎞⎟⎠ + 𝜈𝑘, 𝜈𝑘 ∼𝒩⎛⎜⎝⎛⎜⎝00⎞⎟⎠ , ⎛⎜⎝ΣRM 00 ΣEMG⎞⎟⎠⎞⎟⎠, (7.17)

with ΣRM and ΣEMG being the noise covariances identified empirically in section 7.3.1 and
section 7.3.2. Finally, a standard (unweighted) Kalman smoother is applied to eqs. (7.14)
and (7.17), yielding the final estimate �̂�mus,𝑘 (from the first of the two states).

7.5 Results
To evaluate the accuracy and robustness of the proposed algorithm for estimating 𝑃mus, the
resulting estimate �̂�mus,𝑘 is compared to the gold-standard reference 𝑃mus-Pes, calculated
using the methods described by Graßhoff et al. [35, 36] (also see section 3.3.3). In order to
prevent different signal baselines from influencing the results, a time-varying baseline is
subtracted from both signals before comparison. To this end, the moving 0.1-quantile of the
respective signal is calculated within a moving 30 s window and subtracted. We compare
nine different variants of the proposed estimation algorithm, listed in table 7.3. In order to
provide a comprehensive performance assessment, three different performance measures
are considered:

1. Spearman’s rank correlation (𝜌), quantifying the degree of correlation between 𝑃mus-Pes
and �̂�mus,

2. the mean absolute deviation (MAD) between 𝑃mus-Pes and �̂�mus, and
3. the mean absolute breath amplitude deviation (MADamp). To calculate this, the

moving 0.95-quantile and the moving 0.05-quantile of both 𝑃mus-Pes and �̂�mus are
calculated over a moving window of 5 s length. The time-varying amplitudes of both
signals are then estimated as the difference between these two quantities, and
MADamp is defined as the mean absolute difference between the two amplitude
signals.

Figure 7.10 shows box plots of these three quantities for all nine algorithm variants.
Concerning worst-case performance, algorithm variant 1 performs best across all three
measures. Its median performance is also best or very close to best on all measures: it
achieves a median MAD of 0.79mbar, a median MADamp of 1.78mbar, and a median 𝜌 of
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Chapter 7 Sensor fusion for inferring 𝑃mus
ID Weighting

scheme Process noise EMG delay
estimation

Quadratic
elastance
term 𝐸2

1 𝑤bin− Σ−𝜂 yes no
2 𝑤bin Σ−𝜂 yes no
3 𝑤mvd Σ−𝜂 yes no
4 𝑤mvd− Σ−𝜂 yes no
5 𝑤𝟙 Σ−𝜂 yes no
6 𝑤bin− Σ+𝜂 yes no
7 𝑤bin− Σ=0𝜂 yes no
8 𝑤bin− Σ−𝜂 yes yes
9 𝑤bin− Σ−𝜂 no no

Table 7.3 – Algorithm variants considered for the evaluation. Variant 1 is the baseline; all
other variants vary a single feature with respect to variant 1.

0.74. It can be observed that both the choice of the weighting scheme and the choice of the
process noise have a large impact on the estimation performance. Interestingly, choosing
the process noise as identified empirically leads to significantly worse performance,
whereas performing fully static regression (Σ=0𝜂 = 0) yields almost as good results as using a
low level of process (Σ−𝜂 ) on these recordings. Finally, including the delay estimation step
does significantly improve worst-case performance, whereas including the quadratic
elastance term actually leads to slightly worse performance. Figure 7.11 shows exemplary
snippets from eight recordings, illustrating the quality of the obtained estimate �̂�mus, and
figs. 7.9 and 7.13 shows exemplary snippets from two recordings including the input signals,
the estimate �̂�mus obtained with algorithm variant 1, and the trajectories of two of the
weighting schemes, 𝑤bin− and 𝑤mvd. Moreover, a Bland–Altman analysis has been
performed for algorithm variant 1, see fig. 7.12. A variance analysis for repeated
measurements [16, 94] yields 95%-limits of agreement of −2.49mbar and 2.65mbar (also
shown in fig. 7.12). Finally, to assess the potential danger of regressor colinearity, variance
inflation factors (VIFs) were calculated on each recording between the three main
regressors �̇�, 𝑉, and EMG𝑑. The maximum VIF was below 4 in all recordings, indicating
that colinearity is not a strong concern [44].

7.6 Discussion & outlook
In this chapter, a new, entirely noninvasive method for monitoring the pressure 𝑃mus
generated by the respiratory muscles of mechanically ventilated patients has been proposed
and evaluated. The method performs model-based sensor fusion, exploits both pneumatic
as well as surface electromyographic measurements, and uses all available (non-faulty)
measurement samples. An importance-weighting procedure is used to ensure that the
identified model describes the patient well in all observed regions of the data space, and the
model parameters are identified in a time-varying fashion. The resulting estimate �̂�mus
shows a median mean absolute deviation of just 0.79mbar with respect to the gold standard
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Figure 7.9 – An extract from the recording of patient B/1. The estimate �̂�mus (red) has
been obtained using algorithm variant 1. The reference measurement 𝑃mus-Pes showed a
recording artifact around 20 s. (The EMG𝑟 channel is not shown here; it has a very small
signal amplitude and is uninformative on this snippet.)

reference 𝑃mus-Pes in eleven recordings from nine intensive care patients, a median mean
breath amplitude absolute deviation of 1.78mbar, and a median coefficient of rank
correlation of 0.74, all indicating a high estimation accuracy. (In this regard, it is crucial to
note that the reference estimate 𝑃mus-Pes is also not free of errors, i.e., it is sometimes not
clear whether a difference between 𝑃mus-Pes and �̂�mus indicates an error in 𝑃mus-Pes, or in�̂�mus.) Both importance weighting and (importance-weighted) delay estimation were found
to significantly improve algorithm performance, whereas a quadratic elastance term did not
improve estimation results.
Compared to purely pneumatic methods for estimating 𝑃mus, such as the methods

proposed by Kondili et al. [48] and Younes et al. [91], the proposed method has the benefit
of an additional source of information that can be exploited: the EMG measurements.
Compared to the EMG-based approach of Bellani et al. [12], who used only the EMG and𝑃aw during occlusions for estimating 𝛼 and then calculated 𝑃mus as 𝛼 ⋅ EMG𝑑, both more
signals and many more samples are exploited. Moreover, unlike any previous approach
except for the method of Kondili et al. [48], the proposed method does not rely on any
special ventilation maneuvers being performed and can (in principle) be applied to
measurements obtained during any ventilation mode. The estimation of 𝑃mus by
incorporating the three sources of available information—EMG signals, pneumatic signals,
and knowledge about the dynamics of 𝑃mus—means that estimation quality can remain
high even if one or multiple of the measurement signals are of low signal quality or even
missing. Another advantage in comparison to earlier EMG-based approaches is that due to
the exploitation of multiple EMG channels and the proposed EMG–𝑃mus model, muscle
crosstalk can be treated correctly in many cases, see the corresponding discussion in
section 7.3.2. Even if crosstalk cannot be removed correctly and one channel becomes
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Figure 7.10 – Distribution of three estimation performance measures comparing the
gold standard 𝑃mus-Pes and various (baseline-adjusted, see section 7.5) surface EMG-based
estimates �̂�mus across all recordings. The performance measures are the mean absolute
deviation (MAD), the mean absolute deviation of the amplitudes of the two signals
(MADamp), and Spearman’s rank correlation coefficient 𝜌. Boxes show the inter-quartile
range and the median value, whiskers indicate the min–max range, and number labels
indicate the algorithm variant as per table 7.3.

unusable, the estimation can still succeed by just using the two other remaining channels.
More generally, the method is, in many cases, able to extract useful 𝑃mus estimates despite
low EMG signal quality, see fig. 7.13 for an example.
One particularity of the proposed method concerns the utilization of a dynamical model

of the time course of 𝑃mus. A few researchers have previously proposed models for the time
course of 𝑃mus [68, 71, 72, 84]. None of them, however, have identified their model from
actual measurements, as has been done here. The selected autoregressive model of second
order may appear simplistic, and more complex models of the respiratory controller can, of
course, be conceived. It is crucial, however, to keep in mind the purpose of the model: to
predict the likely evolution of 𝑃mus a few samples into the future, in order tomediate between
the two existing estimates 𝑃RMmus and 𝑃EMGmus in a useful way. For this purpose, the identified
model is certainly sufficient, if not optimal.
Performing time-varying estimation, as opposed to static regression, did not yield large

benefits for the recordings considered here, although slightly better estimates were obtained.
However, this, while interesting to note, does not mean that time-varying estimation is not
worthwhile. The recordings considered here were rather short (between five and thirty
minutes) compared to the time periods over which a respiratory monitoring system would
be employed in an intensive care unit. During such long time periods, it appears much
more likely that significant parameter changes will occur, if only because the electrode–skin
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Figure 7.11 – Exemplary results of variant 1 of the proposed, surface EMG-based
estimate �̂�mus (red), compared to the gold standard 𝑃mus-Pes (blue).

contact changes or the patient changes position in bed. Of course, it is an equally valid
option to repeatedly perform regression over fixed time windows, but for various reasons, it
may be considered preferable to use a dedicated time-varying estimation scheme.
There are only a few fundamental limitations to the applicability of the proposed method.

Of course, any condition that fully prevents the measurement of respiratory surface EMG
measurements means that the proposed method is not applicable. A high degree of
colinearity (or linear dependence) between the regressors �̇�, 𝑉,EMG𝑖,EMG𝑑, and EMG𝑟
might theoretically pose a problem (see section 2.2.1), but this has not been observed here
(the maximum variance inflation factors are < 4 in all recordings, see section 7.5) and
appears rather unlikely due to the physically constrained nature of the system generating
the measurements. Should colinearity become a real concern, it could be alleviated by
performing any type of ventilation maneuver that forces a disruption to the usual breathing
pattern. (Colinearity between the different EMG channels is, of course, possible and not
unlikely, but it does not pose a problem: the particular values of the coefficients 𝛼 are not of
relevance.)
The selection (and weighting) of samples to perform the regression on has a tremendous

impact on the quality of the estimate 𝑃mus, with the performing of special identification
maneuvers only being the most extreme case of sample selection and weighting. This is
demonstrated by the variability of the estimation results as a function of the employed
weighting scheme. In the spirit of the previous chapter 6, to obtain good estimation results,
it is crucial to specify the target distribution 𝑝target(�̇�, 𝑉,EMG𝑑) over which the model
should perform well, and to weight samples accordingly. To this end, a simple weighting
scheme has been proposed that discards regions during which all signals are negligible and
regions with large flow or pressure gradients, and that roughly equalizes the total weight on
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Figure 7.12 – A Bland Altman analysis comparing variant 1 of the proposed surface EMG-
based 𝑃mus estimator to the gold standard 𝑃mus-Pes. The limits of agreement are calculated
using themethod of Bland andAltman [16]. Different colors indicate samples from different
recordings.

samples during which the electro-mechanical scaling factors 𝛼, the resistance terms 𝑅1 and𝑅2, and the elastance 𝐸 can be observed. Using this simple weighting scheme markedly
improves the quality of the estimation results. On the other hand, the influence of the
weighting scheme represents clear evidence that the postulated model, consisting of a
classical model of respiratory mechanics and a simple electro-mechanical coupling model,
suffers from significant model errors. As was discussed at some length in section 2.1.4, this
model error can be understood as either a deficiency of the systemmodel or as a deficiency
of the noisemodel.
Concerning the system model, it is well known (and was exploited by the previously

described weighting scheme) that the classical model is inaccurate during phases of rapid
pressure and flow changes due to inertial effects, among others, and during phases of
extreme lung inflation or deflation. This deficiency can also be observed in fig. 7.6, where
large residuals are observed close to �̇� = 0, which occur during either sharply rising flows
at the beginning of inspiration or sharply falling flows at the beginning of expiration. The
employed physiological model could, of course, be further extended to account for effects
like tissue viscoelasticity [9] and intrinsic PEEP [50]. The inclusion of viscoelastic effects
will generally lead to models that are nonlinear in the parameters, i.e., a linear Kalman filter
and smoother could no longer be used. Instead, one of the nonlinear filter and smoother
variants discussed in section 2.3.3 could be employed.
Concerning the noisemodel, there is simply a variety of external disturbances and model

errors that are unobservable (with current methods). Thus, the Gaussian noise model that
has been employed here is very likely not an ideal choice. Instead, a “fat tail” noise model
could be employed, resulting in a robust Kalman filter implementation that is more resistant
to outliers [80, 86]. In addition, an errors-in-variables formulation could be pursued, in order
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Figure 7.13 – An extract from the second recording of patient B/8, illustrating that the
proposed method can yield a high-quality estimate �̂�mus (red) even in the face of low EMG
signal quality. The estimate �̂�mus has been obtained using algorithm variant 1. (The EMG𝑟
channel is not shown here; it has a very small signal amplitude and is uninformative on this
snippet.)

to account for the non-negligible measurement errors in all regressor signals, but particularly
in the EMG signals [82]. If a time-varying estimation scheme shall still be used, this would,
again, result in a nonlinear filtering and smoothing problem. Moreover, while a constant
measurement noise covariance was assumed for the pneumatic 𝑃mus estimate 𝑃RMmus and the
electromyographic 𝑃mus estimate 𝑃EMGmus in eq. (7.17), these covariances could also be chosen
in a time-varying fashion. This would allow for, e.g., accounting for time-varying signal
quality or model credibility in any of the model components. Finally, to further improve
the robustness to muscle crosstalk, a dedicated crosstalk detection and removal stage could
be introduced into the EMG preprocessing stage, utilizing, for example, the developments
presented in chapter 4.
Closely related to the noise model, proper uncertainty quantification for the resulting

estimate �̂�mus appears highly desirable: (Temporarily) inaccurate estimation results would
pose significantly less of a problem if their low accuracy were at least known reliably. While
the described algorithm is probabilistic in nature and does provide uncertainty estimates in
the form of the Kalman filter and smoother state covariances, these covariances neglect a
crucial source of uncertainty: model uncertainty. As a consequence, when, e.g., a breath is
encountered that cannot be described well given the current set of parameter estimates,
uncertainty estimates will still shrink (except for the influence of the process noise, that is),
simply because more samples have been observed. Proper uncertainty quantification is an
old yet burgeoning research field [76]; one rather recent approach that might be worthwhile
investigating for the present problem is the identification of a Gaussian process model of
equation errors in eq. (7.13) [15, 88].
An alternative venue for further improving the reliability and quality of the estimation
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Chapter 7 Sensor fusion for inferring 𝑃mus
might be to perform dedicated identification maneuvers, as many other researchers have
done [11, 12, 79, 93]. In this regard, it is noteworthy that since the proposed method does
not demand any particular type of maneuvers, less intrusive maneuvers than inspiratory or
expiratory hold maneuvers could be conceived that would still improve observability. For
example, inspiratory or expiratory flow limitations or temporarily varied levels of pressure
support might similarly assist identification while not being as uncomfortable for patients as
occlusions. There are large bodies of research on active inference [32, 33], dual control [87]
and optimal design of experiments [67] that could be leveraged for the automated design of
ideal ventilatory maneuvers. This remains to be explored in future studies.
Given the recognized importance of monitoring 𝑃mus during assisted mechanical

ventilation [13, 34, 78], the proposed method may—potentially with some further
improvements and moreover assuming similarly positive results in future, more
comprehensive performance evaluations—be attractive for future clinical use. One
decisive advantage of an sEMG-based monitoring solution is that it is the only currently
available means for measuring the activity of respiratory muscles other than the diaphragm:
the activity of any accessory muscles can be monitored, and their contribution to 𝑃mus
quantified. In principle, the individual terms 𝛼𝑖EMG𝑖, 𝛼𝑑EMG𝑑, and 𝛼𝑟EMG𝑟 quantify the
pressure contribution of the muscles measured by the different EMG channels, as long as
the signals are clean and there is no crosstalk. The validity of the estimated contributions is,
however, hard to quantify since there is no reference measurement available to compare to.
Nevertheless, this could represent an attractive avenue for future research since the
monitoring of respiratory muscle activity has been recognized as clinically important [22,
73], Finally, besides monitoring, the proposed method could also be used to implement a
proportional support mode [46, 65], see fig. 7.14. Proportional support modes have been
shown to improve patient-ventilator interaction [38], even if 𝑃mus is not known with a high
degree of accuracy [93].
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Chapter 8

Conclusion & Outlook

A great discovery solves a great problem but there is
a grain of discovery in the solution of any problem.
Your problem may be modest; but if it challenges
your curiosity and brings into play your inventive
faculties, and if you solve it by your own means, you
may experience the tension and enjoy the triumph of
discovery.

(George Pólya, How to solve it)
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8.1 Summary

As the evidence for the clinical benefits of monitoring the respiratory drive
of critically ill patients has become more and more compelling [3, 8], interest in using

respiratory surface EMG measurements for this purpose has risen. There are, however,
important signal processing challenges to overcome in order to obtain a reliable monitoring
tool that is suitable for the application in respiratory care. In this thesis, several
contributions towards this specific purpose have been described, along with contributions
to the broader fields of electromyography and statistical inference. Throughout all
application challenges considered, model-based, probabilistic inference has been employed.

8.1 Summary
In chapter 4, a comprehensive mathematical model of surface electromyography, muscular
force generation, and motor unit pool organization has been described. The model
integrates many different aspects of muscular physiology and incorporates many new
models for individual subcomponents. The distribution of motor unit and muscle fiber
properties was modeled stochastically and continuously (as opposed to assuming a fixed
number of MU and fiber types). The electrical and mechanical properties of muscle fibers
were combined deliberately such that a whole simulated muscle attains a realistic
EMG-force relationship. Moreover, an alternative reformulation of a previously proposed
mathematical model of action potential propagation was described, and several
physiologically meaningful mathematical properties of the model were proved. The model
was then used to validate a newly proposed blind source separation (BSS) algorithm for the
separation of the activity of multiple respiratory muscles in multi-channel respiratory
surface EMGmeasurements. (The derivation of said algorithm was not part of this thesis.)
The algorithm is based on a convolutive mixing model and exploits very little prior
knowledge about the nature of the sources and the mixing system. Given the difficulty of
the separation task, the algorithm yielded good separation results, removing significant
amounts of cardiac interference and mostly recovering the original source activity. However,
it appears likely that even better-performing algorithms could be designed by exploiting
more information about the system at hand. One way of simplifying the separation task is
to separate the problems of cardiac artifact removal and muscle crosstalk separation.
Chapter 5 then was wholly dedicated to the task of removing cardiac artifacts from

single-channel respiratory surface EMG measurements. To this end, a novel artifact
removal algorithm was presented that represents a hybrid between probabilistic,
model-based, and nonparametric approaches. A fully nonparametric characterization of the
individual cardiac beat shape was combined with a probabilistic model for the temporal
evolution of the cardiac beat shape between successive beats and a principled probabilistic
inference procedure for learning all relevant model and noise parameters from a single
recording, using an array of separate linear Kalman filters and smoothers. The algorithm
was then compared to a set of previously proposed algorithms within a comprehensive
performance evaluation framework. All algorithms were compared based on both real
measurement signals obtained in a study with healthy volunteers, as well as on synthetic
signals obtained from the superposition of leg EMG measurements and singe-lead ECG
signals. A total of four different evaluation measures was considered, with the newly
proposed algorithm performing best for recovering the raw, uncontaminated EMG signals.
A secondary finding was that if only a clean EMG envelope signal is of interest (as opposed
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to the raw signal), a simple high-pass filter with a high cut-off frequency combined with a
subsequent moving median-based envelope calculation is already sufficient, and there is no
need for more complex algorithms.
Motivated by the estimation problem to be pursued in the subsequent chapter 7,

chapter 6 treated a theoretical statistical question: how can one perform parameter
inference in the face of covariate shift, concept drift (i.e., time-varying model parameters),
andmodel mismatch? This setting turned out to be surprisingly unexplored in the literature.
A novel, principled solution approach for this challenging estimation setting was proposed,
based on a combination of importance weighting, Kalman filtering and smoothing, and a
probabilistic description of regression in the face of concept drift in a state-space model.
Weighted variants of the classical Kalman filter and smoother were derived, which are
simple to implement and of equal computational complexity as the standard algorithms.
Moreover, a simple and efficient multivariate density estimation scheme and a simple,
importance-weighted hyperparameter tuning scheme were proposed, the latter based on
weighted prediction error minimization. Numerical examples support the claim that the
proposed methodology can be used to successfully perform inference in the face of covariate
shift, concept drift, and model mismatch.
Finally, chapter 7 addressed the problem of inferring the pressure 𝑃mus, generated by the

respiratory muscles of patients under assisted mechanical ventilation, based on both
surface EMG measurements of the respiratory muscles and standard pneumatic
measurements provided by the mechanical ventilator. To this end, three model components
were employed: a classical model of respiratory mechanics, a new (very simple) model
relating multiple respiratory EMG measurements and 𝑃mus, and a new (also very simple)
model of the dynamic time course of 𝑃mus. Evidence of the adequacy of the three selected
model components was provided based on model analyses in eleven recordings from
intensive care patients. Based on these three model components, a probabilistic sensor
fusion method was described that uses all available measurement modalities and (almost)
all available measurement samples. As the inference problem suffers from covariate shift,
concept drift, and model mismatch, the importance-weighted estimation scheme described
in the previous chapter was exploited here. An extensive evaluation of different variants of
the proposed method on intensive care data indicated the high estimation quality achieved
by the proposed algorithm compared to (invasive) gold standard estimates based on
esophageal pressure 𝑃es. Importance weighting and delay estimation were found to
significantly improve the quality of the resulting estimates �̂�mus.

8.2 Discussion & Outlook
Many potentially beneficial detail improvements to the algorithms, models, and evaluation
strategies described throughout this thesis have already been discussed in the corresponding
chapters; these shall not be reiterated here. Instead, this final section shall provide a broader
perspective on what has been achieved, as well as potential future uses, improvements, and
alternatives to the methods presented in this thesis.
The project pursued in this thesis is highly interdisciplinary at its core: it lies at the

intersection of the research fields investigating respiratory support, electromyography, and
statistical inference. Successful implementation of a surface-EMG-based respiratory
monitoring methodology will require deep knowledge in all three fields and will benefit

Inter-
disciplinarity
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tremendously from contributions by experts from all three fields.1 From the perspective of
clinical respiratory support research, the realization of the application investigated in this
thesis is highly desirable to improve patient treatment outcomes. Thus, practical solutions
to implementing a highly robust and practically useful monitoring method are sought after.
From the perspective of electromyographic research, the respiratory application may be of
particular interest not only because of its intrinsic value but also because it is quite different
from existing applications, which are usually in ergonomics, sports medicine, or prosthetics
research. On the one hand, the application is analogous to many classical biomechanical
problems in many ways if one understands the mechanical ventilator as a “respiratory
prosthesis” and respiratory mechanics as an analogon to a biomechanical joint model. On
the other hand, besides the differences in muscle properties, geometry, and biomechanics,
the application on intensive care patients comes with many challenges and characteristics
that differ from those encountered in typical EMG applications. Incidentally, such an
application in intensive care may help to accelerate the translation of EMG research into
clinical practice: it has been hypothesized that the fact that EMG is usually not used to treat
life-threatening problems may have historically posed a barrier to its widespread clinical
translation [12]; this would certainly be alleviated by the application discussed in chapter 7.
Finally, from the perspective of statistical inference, the application under consideration
comes with a convergence of many theoretically interesting challenges: relatively small
study population sizes, significant model mismatch and various sources of outliers and
disturbances, concept drift and covariate shift, high inter-patient variability, unsupervised
estimation (even if a reference measurement is theoretically available, it will ultimately not
be available in the patients the method is applied to), and a lack or low quality of reference
measurements even in study populations. (For blind source separation and cardiac artifact
removal, no reference measurements are available; for 𝑃mus estimation, the reference
measurement is also subject to significant sources of disturbances.) As has historically often
been the case, these practical challenges may spur theoretical innovation, such as the
modest developments presented in chapter 6.
The encouraging results presented particularly in chapter 7 support hopes that surface

EMG-based respiratory monitoring may soon find its way into the clinic to patients’ great
benefit. There are, however, technical challenges remaining to be addressed before these
hopes can be realized (besides the obvious need for a more comprehensive evaluation in
clinical trials). Most importantly, in this thesis, all algorithms were developed in an offline
fashion, i.e., they utilize information from the whole recording to which they are applied.
Depending on the specific application—retrospective monitoring, real-time monitoring, or
proportional support— , algorithms with varying degrees of real-time capabilities would
need to be developed. This, while certainly possible, is nontrivial in all three application
problems considered in this thesis: source separation for crosstalk detection and removal,
cardiac artifact removal, and 𝑃mus estimation. Concerning source separation, various
real-time capable blind source separation frameworks have been proposed in the literature,
including variants of the TRINICON framework that has been employed here [1, 4]. In the
EMG-based prosthetics control community, multiple groups have addressed the application
of non-negative matrix factorization (NMF)-based algorithms for real-time prosthesis
control [5, 10, 11]. Regarding cardiac artifact removal, the challenge posed by real-time
1In fact, this thesis has benefited vastly from the author attending conferences and workshops from all three
fields and receiving generous advice from experts in all three.

Real-Time
Application
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applications depends mainly on the employed algorithm and the exact requirements. While
requirements that allow for a delay of up to one heartbeat should be comparatively simple
to satisfy, any requirements below that threshold will pose significant challenges to any of
the assessed methods and require significant further research efforts. However, it is
noteworthy in the context of this thesis that for controlling a mechanical ventilator, a
combination of simple gating and signal prediction during the ‘gaps’ appears likely to
perform sufficiently well (due to the typical smoothness and low rate of change of 𝑃mus).
Finally, the 𝑃mus estimation algorithm presented in chapter 7 can, in principle, be applied in
real-time—up to the EMG signal processing delay. Incidentally, as the delay analysis in
chapter 7 indicated (and as is known from basic physiology, see fig. 3.3), there is a
significant although small delay between the raw EMG signal and 𝑃mus, indicating that if an
appropriate EMG signal processing chain with a low enough delay could be identified, the
resulting EMG-based estimate �̂�mus could be available almost synchronously to 𝑃mus-Pes.
The challenges of source separation, cardiac artifact removal, and estimation of 𝑃mus,

although closely related, have been mainly treated in isolation in this thesis. It appears
likely that further gains in estimation performance concerning �̂�mus could be achieved
through a tight integration between these different processing steps. As discussed in
chapter 4 already, the source separation task could be significantly simplified if a dedicated
cardiac artifact removal procedure were to be applied first. Then, instead of the original
EMG envelope signals, one could use the source signals identified by a source separation
procedure as the input signals for estimating 𝑃mus. Moreover, uncertainty estimates of both
preprocessing steps and general signal quality indices could be incorporated into the
estimation procedure described in chapter 7 by assigning time-varying and
patient-dependent measurement noise covariances based on the results of these
preprocessing steps.
Method-wise, all three application chapters (chapters 4, 5 and 7) have shown the

importance of selecting suitable system and noise models for achieving accurate results,
and in all three chapters, further model refinements represent one possible avenue for
improvement—human physiology is complex and only rarely fully abides by simple,
parametric models. In present days, a standard response to this problem is to use very
flexible high-dimensional (nonparametric or machine learning) models that are— in
principle—capable of accurately representing arbitrarily complex relationships. There are,
however, serious challenges to overcome in applying such high-dimensional models to the
problems discussed in this thesis, including low study population size, high inter-patient
variability, patient variability over time, generally low signal-to-noise ratio as is typical for
biomedical recordings, and a lack of gold-standard reference signals. Model
underspecification is known to cause serious challenges even when huge datasets are
available [7] and has demonstrably led to shortcut learning in many medical applications [2,
17]. Linked to the challenges of proper evaluation [7, 14], various studies have reported
highly exaggerated performance claims for machine learning methods in medical
settings [6, 9, 18]—and all of these problems were reported in applications based onmuch
larger datasets than the ones available for time series problems in the intensive care setting.
There are, thus, reasonable arguments to be made for the use of simple, parametric models
based on prior knowledge for the applications discussed in this thesis. (The author has
recently published a survey of challenges and potential solutions to the responsible and
regulatory conform application of machine learning methods in medicine [13], touching
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upon these and other issues.)
Importance weighting, as discussed introduced in section 2.1.6 and further exploited in

chapter 6, represents an alternative avenue for improving inferences based on imperfect
models. The fundamental idea is, simply, to weight samples based on how important it
is for the model to fit this particular sample well. While traditionally, this approach has
been applied with a known (or estimated) target distribution 𝑝target(𝑥) to obtain a model that
performs optimally on data drawn from that distribution [15], the target distribution𝑝target(𝑥)
can also be understood as a design variable: in which regions of the data space would we
like the identified model to perform well? Which regions do we consider more important
than others? In chapter 7, it was the application of a weighting scheme based on such
considerations that led to a marked improvement in estimation performance. The methods
derived in chapter 6, however, are applicable to the fully general case of regression under
covariate shift, concept drift, and model misspecification and could thus find applications
far beyond this thesis. Extending these methods to the case of classification under the same
assumptions (covariate shift, concept drift, model misspecification), using, for instance, the
framework of Wilkinson et al. [16], represents an attractive avenue for future research.
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1 Distributions
The followingminimal overview of the theory of continuous linear functionals is reproduced
verbatim from andwith permission of Petersen andRostalski [2] for the reader’s convenience.
A distribution 𝑇 is a continuous linear mapping 𝑇∶ 𝐷 → ℝ, where 𝐷 is a given set of so-

called test functions. In the following, the value of a distribution 𝑇 acting on a test function 𝜁
shall be denoted by the duality ⟨𝑇, 𝜁⟩, with test functions chosen from the set 𝐷 of compactly
supported, smooth functions. Furthermore, two basic properties of distributions are⟨𝜂𝑇, 𝜁⟩ = ⟨𝑇, 𝜂𝜁⟩ ∀ 𝜂 ∈ 𝐶∞, 𝜁 ∈ 𝐷
and ⟨𝑇′, 𝜁⟩ = −⟨𝑇, 𝜁′⟩ ∀ 𝜁 ∈ 𝐷.
Moreover (following from the above), considering 𝜂 ∈ 𝐶∞,

⟨(𝜂𝐻)′, 𝜁⟩ = −⟨𝜂𝐻, 𝜁′⟩ = − ∞∫−∞ 𝑥 d (𝜂𝐻)(𝑥) 𝜁′(𝑥)
= −[𝜂𝜁]∞0 + ∞∫0 𝑥 d𝜂′𝜁 = ⟨𝛿, 𝜂𝜁⟩ + ⟨𝜂′𝐻, 𝜁⟩
= ⟨𝜂′𝐻 + 𝜂 𝛿, 𝜁⟩.

For more background on distributions (i.e., continuous linear functionals), refer to, e.g.,
Clarke [1].

2 Multivariate Gaussian calculus
The multivariate Gaussian (or „normal“) distribution generalizes the one-dimensional
Gaussian (or normal) distribution. A random vector 𝒳 ∶ Ω → ℝ𝑛 is normally distributed,
i.e., 𝒳 ∼𝒩(𝜇,Σ),
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if every linear combination of its components follows a univariate normal distribution. If the
covariance matrix Σ is positive definite, the distribution is said to be „non-degenerate“, and
in this case, the probability density function (PDF) of the multivariate Gaussian distribution
is given by 𝑝(𝑥) = 1√(2𝜋)𝑛|Σ|𝑒− 12 (𝑥−𝜇)𝖳Σ−1(𝑥−𝜇). (1)

For 𝑛 = 1, eq. (1) reduces to the standard expression for the univariate case,
𝑝(𝑥) = 1√2𝜋𝜎2 𝑒− (𝑥−𝜇)22𝜎2 ,

where 𝜎2 denotes the variance. Throughout this thesis, sometimes the alternative notation𝒩(𝑥 ∣ 𝜇𝑥,Σ𝑥) is used to clarify that the distribution of the variable 𝑥 is meant.
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