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Abstract.
Objective: Surface electromyography (sEMG) is a noninvasive option for

monitoring respiratory effort in ventilated patients. However, respiratory sEMG
signals are affected by crosstalk and cardiac activity. This work addresses the blind
source separation (BSS) of inspiratory and expiratory electrical activity in single-
or two-channel recordings. The main contribution of the presented methodology
is its applicability to the addressed muscles and the number of available channels.

Approach: We propose a two-step procedure consisting of a single-channel
cardiac artifact removal algorithm, followed by a single- or multi-channel
BSS stage. First, cardiac components are removed in the wavelet domain.
Subsequently, a nonnegative matrix factorization (NMF) algorithm is applied to
the envelopes of the resulting wavelet bands. The NMF is initialized based on
simultaneous standard pneumatic measurements of the ventilated patient.

Main results: The proposed estimation scheme is applied to twelve clinical
datasets and simulated sEMG signals of the respiratory system. The results on
the clinical datasets are validated based on expert annotations using invasive
pneumatic measurements. In the simulation, three measures evaluate the
separation success: The distortion and the correlation to the known ground truth
and the inspiratory-to-expiratory signal power ratio. We find an improvement
across all SNRs, recruitment patterns, and channel configurations. Moreover, our
results indicate that the initialization strategy replaces the manual matching of
sources after the BSS.

Significance: The proposed separation algorithm facilitates the interpretation
of respiratory sEMG signals. In crosstalk affected measurements, the developed
method may help clinicians distinguish between inspiratory effort and other
muscle activities using only noninvasive measurements.

1. Introduction

The possibility of noninvasive measurements makes surface electromyography (sEMG)
valuable in clinical applications. Compared to invasive setups with needle electrodes,
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recorded electrical potentials on the skin surface result from superimposing all nearby
electrical fields. This provides the opportunity to record the electrical activity of
multiple muscle fibers with a single channel. A limitation of surface measurements is
that crosstalk from nearby tissues and undesired surrounding electrical sources often
cannot be avoided. Bipolar configurations with great inter-electrode distance, which
previous works have used in respiratory settings [1], [2], enhance this effect [3].

These properties must be considered while interpreting sEMG recordings, and
one approach is blind source separation (BSS). The application of BSS to different
types of sEMG signals and in the context of various applications is a widely studied
field. For a recent review, refer to the publication by Holobar and Farina [4]. BSS
generally targets the reconstruction of source signals, using no prior knowledge about
the sources or the parameters of the underlying system. When applied to sEMG
measurements, BSS algorithms differ in the desired domain or the level of detail of
the separation. At the smallest scale, electrical signals of single motor units (MUs)
are reconstructed [5]–[7]. Furthermore, BSS may identify the contribution of single
muscles to suppress crosstalk [8], [9]. And finally, the interaction of multiple muscles
in complex motion patterns could be characterized [4], [10]. The latter is especially
popular in myoelectric control of prostheses and aims to identify muscle synergies [11]–
[18]. These approaches differ in the assumptions on the underlying mixing process,
with convolutive and instantaneous linear mixture models being the most frequent
assumptions [4].

Most BSS algorithms in the context of sEMG require an equal or larger number
of channels than sources [4]. The algorithm proposed in this article targets the
separation of inspiratory and expiratory activity in single-channel and low-density
sEMG recordings of the respiratory muscles. This application is similar to the earlier
contribution by Petersen et al. [9]. In contrast to high-density measurements, the
number of channels is small in low-density recordings and each electrode is placed
next to a particular muscle of interest or at a defined anatomical position. As
a consequence, the number of channels might not exceed the number of sources
in this setup. Especially the single-channel case is underdetermined. However,
these configurations are compatible with routine use in the intensive care setting.
If not corrupted by crosstalk, these measurements allow for monitoring respiratory
activity [19], detecting patient-ventilator asynchrony [20]–[22] and evaluating the
patient’s work of breathing [1], [2], [23].

Several muscles contribute to breathing. The primary muscle of inspiration
is the diaphragm, a large muscle that horizontally spans a significant part of the
thorax. Accessorily, the external intercostal muscles can support the inspiratory effort.
Expiration is generally passive at rest. However, in stress or ill-configured ventilatory
support, the abdominal and internal intercostal muscles enforce active expiration [24].
From the perspective of skin electrodes, the rib cage, abdominal muscles and fat partly
cover the diaphragm, such that the electrode-to-muscle distance is large. Hence,
low signal amplitudes and crosstalk must be expected in sEMG recordings of the
diaphragm. External and internal intercostals are anatomically similar and positioned
close to one another, also leading to a high probability of crosstalk being present in
the recordings. Besides, the heart’s electrical activity heavily contaminates all sEMG
measurements on the thorax [25]–[27]. In conclusion, these hindrances make a blind
separation of inspiratory and expiratory activity quite specific and challenging.

Our proposed approach targets the estimation of the respiratory muscle drive,
which Holobar and Farina [4] call an activation primitive. We assume that two
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primitives can serve as surrogates for the sEMG signal envelopes of two virtual
sources or synergies: inspiration and expiration. As multiple muscles contribute to
the respiratory sEMG signals, this concept aggregates their synergistic effect and does
not claim to identify the activity profiles of individual muscles. We chose nonnegative
matrix factorization (NMF) [28] for this task of blind source separation and assume a
linear and instantaneous mixing process of the source activation primitives.

Validation is performed in two different domains. On the one hand, the proposed
procedure is applied to clinical datasets recorded in ventilated patients and evaluated
based on experts’ annotations. On the other hand, simulated sEMG datasets of all
relevant respiratory muscles and cardiac activity are used for quantitative assessment
since ground truth for the separate source signals is not accessible in clinical recordings.
Therefore, we use a simulation model for sEMG signals [29], [30] complemented by an
ECG simulator [31], [32] and a pneumatic model of the respiratory system [33].

The central contribution of this work is an algorithm to reduce crosstalk in
clinical respiratory sEMG recordings. An important feature is its applicability to
a limited number of recording channels, including the underdetermined case. To the
best of the author’s knowledge, no state-of-the-art approach exists for the problem at
hand. Specifically, this work refines a method for suppressing cardiac activity [27] and
interfaces the results to a BSS algorithm. The latter employs the NMF algorithm
as a tool for identifying muscle synergies [4], [10]–[18], [34]–[37]. Here this work
contributes in three ways. First, activation primitives for inspiration and expiration
are identified reliably. Second, underdetermination is overcome by using a denoised
wavelet representation of the signals. Third, an initialization strategy based on
pneumatic recordings of the ventilated patient’s respiratory airflow is introduced. It
is shown that this approach allows unsupervised and automated source matching and
thus contributes to the applicability in the clinical context. Compared to Petersen et
al. [9], who have also addressed the application of BSS algorithms to respiratory
sEMG recordings, the above contributions represent the main difference and major
innovation. Additionally, the validation is based on a larger simulation model,
including the intercostal muscles, and the algorithm’s performance on clinical datasets
is also evaluated quantitatively using expert knowledge.

The following section describes the clinical datasets and the sEMG simulation
setup, as well as the overall processing algorithm and the applied validation procedure.
The separation results on simulated and real signals are provided in section 3 and
discussed in section 4.

2. Methods

The proposed algorithm performs cardiac artifact removal prior to the blind separation
of respiratory muscle activities. Both processing steps use dimensionality expansion
based on the stationary wavelet transform (SWT) [38]. Petersen et al. [27] have
proposed that using the SWT for cardiac artifact removal can be beneficial for
certain applications. Other established tools like the Pan-Tompkins algorithm [39],
wavelet-thresholding [40], and NMF [28] are used for this purpose. The BSS step is
complemented by an initialization strategy that allows an automatic source matching
based on airflow measurements of the ventilated patients. The unsupervised procedure
separates inspiratory and expiratory sEMG activity from single- and multi-channel
recordings with dominant cardiac artifacts. To be precise, the activation primitives [4]
of inspiration and expiration are estimated. The algorithm is tested on clinical datasets
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and simulated sEMG signals. The latter enables a proper validation based on the
known ground truth.

This section describes the acquisition of the utilized respiratory sEMG data, first
the clinical and subsequently the simulation setup. The next part of this section
outlines the overall algorithm. The final section details the quantitative validation
applied to the separation results.

2.1. Data acquisition

2.1.1. Clinical datasets. Clinical data were obtained from twelve adult intensive
care patients enrolled in an observational trial at Charité, Universitätsmedizin
Berlin, Department of Anesthesiology and Operative Intensive Care Medicine (trial
registry number DRKS00017138). All patients were treated with assisted mechanical
ventilation due to acute respiratory distress syndrome. Measurements were performed
during several stages of illness for 15 min to 30 min per recording and captured
pneumatic data, including respiratory airflow, the transdiaphragmatic pressure, and
two differential sEMG signals. Figure 1 illustrates the electrode positions used for
channel A and channel B. The electrodes for channel A are placed at the costal margin,
measuring the electrical activity of the diaphragm and the abdominal muscles. For
channel B, electrodes are placed parasternally in the third intercostal space measuring
intercostal muscles. In this work, BSS is applied to sections of 30 s, one for each
patient. These segments were selected by manual inspection and show the patient’s
respiratory effort with electrical activity in at least one sEMG channel.

2.1.2. sEMG signal simulation. A simulation allows accessing the ground truth
since the activity of each contributing source and the source signals are known. No
physiological measurement enables the measuring of this ground truth in vivo [6], [7],
[9]. Thus, applying the proposed algorithm to simulated data is crucial for validating
the source separation results.

The simulation is based on a comprehensive model for simulating sEMG
recordings of skeletal muscles as proposed by Petersen and Rostalski [29], implemented
in the semgsim toolbox [30]. The model comprises, for instance, motor unit pool
organization, rate coding and recruitment, intracellular action potential generation
in the signal creation and the propagation of these action potentials throughout the
surrounding biological tissue layers. A realistic EMG-force relationship to the whole
muscle as well as to individual MUs is assumed. Moreover, the model conforms with
experimentally observed phenomena such as the size principle [41], [42], and the onion-
skin phenomenon [43], [44]. A superposition of many spatially filtered motor unit
action potentials yields the overall surface potential. The effect of the surrounding
biological tissues is simulated based on the analytical model of Farina and Merletti [45],
which represents muscle fibers as straight lines that run parallel to the skin surface in
an infinitely extended, three-layer volume conductor. In addition to this geometrical
simplification, the model also does not account for muscle shortening or muscular
fatigue effects.

The considered surface electrodes and their positions are based on the clinical
setting and agree with the illustration in fig. 1, showing the two measuring channels (A
and B). Figure 1 also visualizes the approximated shapes of the muscles used in the
simulation. The diaphragm (DI) functions as the primary muscle of inspiration.
Moreover, one pair of the external (EI) and internal intercostal (II) muscles are
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included as accessory respiratory muscles. The EI are active in inspiration and the II in
expiration. Furthermore, six identical packs model the rectus abdominus (RA), which
acts as an expiratory muscle. The number of MUs for each simulated muscle was
chosen as follows: Each of the intercostal muscle pairs consists of 80 MUs, while the
diaphragm comprises 200 MUs. Lastly, each of the RA packs contains 50 MUs. Across
all muscles, more than 400,000 individual muscle fibers were simulated. For positioning
the MUs, each muscle’s cross-section was evenly divided into a set of rectangular parts,
and a corresponding fraction of the muscle’s MUs were then distributed randomly
within each part. The simulation uses the muscle activity patterns shown in the first
row of fig. 4, representing eight breathing cycles with a respiratory rate of 15 breaths
per minute.

Independently of the sEMG simulation, cardiac artifacts are generated using
the ECG simulator published in the open-source ECG toolbox by Sameni [31]. The
simulator is based on the ECG model by McSharry et al. [32]. The scaled simulated
cardiac activity is added to the EMG simulations so that the power during QRS-
complexes is a hundred times higher than the EMG power during active phases. This
amplitude relation imitates the ECG-to-EMG ratio of the clinical data [27].

In the source separation algorithm described in the next section, pneumatic
recordings are used for the initialization step. Hence, a pneumatic model extends
the sEMG simulation to provide an equivalent validation dataset. The basis of this
third simulation component is a single-compartment model [33] of the respiratory
system, i. e.,

pvent(t) + pmus(t) = RV̇ (t) +
1

C
V (t) + p0 (1)

with the airway resistance R and the system compliance C. The pressure p0
is the constant offset pressure within the lung, which is usually higher than
the environmental pressure. The contraction of the respiratory muscles produces
the time-varying pressure pmus. We model pmus by a weighted sum of sEMG
envelope signals obtained from the acquired differential sEMG simulations as has
been proposed by Petersen et al. [23]. Positive weights are chosen for inspiratory
muscles, whereas muscles that enforce active expiration, contribute negatively. Hence,
the pressure pmus is positive during inspiration and negative during expiration.
Additionally, a rectangular function with positive offset models the applied pressure
of the ventilator pvent. The pressure pmus triggers the beginning of inspiration
in pvent, simulating an assisted ventilator mode. Finally, solving the linear differential
equation eq. (1) for the volume V provides the desired airflow V̇ .

2.2. Algorithm for the separation of inspiration and expiration

The overall source separation pipeline is depicted in fig. 1, starting with the data
acquisition on the top left and finishing with the estimated source signals on the
right. The measurement setup is described above in section 2.1. It provides two
sEMG recordings, where sA is the differential signal of channel A corresponding
to electrodes 1 and 2 and sB refers to channel B of electrodes 3 and 4. The
signal amplitudes vary widely depending on the patient’s breathing effort, muscle
recruitment, and electrode positioning. Sometimes, one of these channels contains no
sEMG activity and thus is uninformative. Additionally, only one channel might be
available or reliable in clinical practice due to disturbances and low signal quality.
Therefore, this article contributes single- and multi-channel variants of the algorithm.
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Figure 1: Overview of the signal processing algorithm. At the top, the anatomical
scheme illustrates the experimental setup for clinical measurements and simulations.
This includes the electrode positions and muscle model geometries. Next, the signal
preprocessing and source separation is visualized: In noisy sEMG data, cardiac
artifacts are suppressed. Subsequently, NMF is applied. In this step, the initialization
of the NMF coefficients employs the respiratory airflow. The algorithm’s outcomes
are the source activation primitives hin and hex corresponding to inspiration and
expiration. Those can be compared to the sEMG envelope signals in which cardiac
artifacts are removed, but respiratory muscle activities are still mixed.
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Figure 2: Cardiac artifact removal and feature extraction. This plot shows an extract
of the second detail coefficient ( d2) of an exemplary breath. The estimation of
the EMG level ( ±tEMG

2 ) takes into account the gates ( ) around the detected
QRS-complexes. See section 2.2 for details. Subsequently, thresholding removes most
of the cardiac artifact and yields the modified coefficient ( dEMG

2 ). Finally, its
envelope ( denv

2 , here multiplied by ten) is extracted as one row of the feature
matrix V .

While we have not yet tested its application to high-density sEMG measurements,
our proposed algorithm can - in theory - be performed on an arbitrary number
of simultaneously recorded channels as long as these recordings contain respiratory
muscle activity. The signal separation procedure is subdivided into two phases. The
first phase is cardiac artifact removal and feature extraction, performed individually for
each recorded channel. In the second phase, an NMF algorithm is employed to perform
the blind source separation using the extracted features of all available channels.

The first stage starts with applying the algorithm by Pan and Tompkin [39] to
detect each heartbeat in a single cardiac contaminated sEMG recording s ∈ RT ,
where T is the number of samples. Next, s is decomposed by the SWT [38] of level n

SWT{s} = {d1, . . . ,dn,an} (2)

using a second-order Daubechies Wavelet [27]. Here, an ∈ RT and di ∈ RT denote
the nth approximation and the ith detail coefficient, respectively. These coefficients
represent different frequency contents of s, sorted from highest (d1) to lowest (an)
frequency component. The temporal resolution of the vectors d1, . . . ,dn,an matches
the sampling of the recorded signal s, which is an inherent property of the SWT. Our
approach employs the detail coefficients to expand the feature space for overcoming
underdetermination. As a result, separating two sources in the single-channel
(underdetermined) case requires n ≥ 2. We found that n = 3 is appropriate because
the first three detail coefficients contain the most sEMG signal power. Higher-level
wavelet coefficients cover lower-frequency signal components, such as cardiac artifacts
and other disturbances. Hence, the first three detail coefficients provide meaningful
information for the following source separation.

In classical wavelet denoising methods, a fixed or adaptive threshold is applied
to each wavelet band [40]. This threshold denotes the noise level. Coefficients, which
do not exceed the threshold are assumed to be noise and thus are not considered.
The proposed approach of this article suppresses the cardiac content in the wavelet
domain. Consequently, it removes sections where the coefficients exceed the threshold
or time-varying EMG level. Figure 2 illustrates the thresholding procedure. Similar
to [27], this threshold tEMG

i ∈ RT is calculated by first gating the cardiac artifacts in
each detail coefficient di and then calculating the vector dmed

i by applying a moving
median filter (window width of 1 s) to the absolute values of each wavelet band. This
filter does not consider gated samples close to QRS-complexes. Narrow gates are
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chosen for low-level coefficients, as the cardiac residuals are sharper in these higher-
frequency bands. Concretely, we start with gates of 250 ms in d1 and increase by 25 ms
in every higher level. These gates can suppress P-waves, whereas slower T-waves are
mostly mapped to the discarded, low-frequency band an. Next, the EMG level tEMG

i

is approximated by three times dmed
i within the gates and ten times dmed

i for the
rest. These scales are set manually and work sufficiently well for common EMG-
to-ECG ratios of thoracic sEMG recordings. In total, dEMG

i ∈ RT is the ith detail
coefficient with suppressed cardiac artifacts, where samples are set to zero if they
exceed tEMG

i or fall below −tEMG
i . The thresholded wavelet bands dEMG

i are further
used to build the feature matrix V required for the following NMF algorithm [28].
Usually, in applications of NMF to EMG signals, the EMG envelope (as opposed to
the raw signal) is used [4], [10], [12]–[16], [34], [36], [37]. Similarly, we calculate the
envelopes of dEMG

i in this approach by

denv
i = env(dEMG

i ) ∈ RT
≥0, (3)

where the function env denotes a moving mean filter of the absolute value with a
window of 750 ms.

The second phase of the algorithm employs the extracted features of all available
sEMG recordings sj ∈ RT with j = 1, . . . ,m to create the nonnegative feature
matrix V . The features of all channels are stacked as follows

V = [V1, . . . , Vm]
>

=
[
denv
1,1 , . . . ,d

env
n,m

]> ∈ RF×T
≥0 , (4)

where denv
i,j denotes the envelope of the ith modified detail coefficient extracted

from jth recording channel. In the single-channel case, the number of features F
complies with the number of levels n, and for multiple recordings, F = m · n applies.
The feature matrix characterizes the contribution of all sources to each wavelet band
over time. The actual NMF source separation

V ≈WH with W ∈ RF×K
≥0 and H ∈ RK×T

≥0 (5)

is performed using an iterative optimization scheme [28], which provides the arbitrarily
scaled matrices W and H. The algorithm requires the specification of the number of
sources K and initialization of the basis matrix W and source activation matrix H.
We target to separate the inspiratory and expiratory activation primitives, hence we
choose K = 2. In the field of BSS in audio signal processing, the matrix W is
often initialized or even fixed with previously learned basis vectors. This initialization
requires isolated training data of the audio sources. However, in the respiratory
sEMG context, this is inconvenient because it would either require calibration by the
separate contraction of inspiratory and expiratory muscles or a manual segmentation.
Additionally, we expect the source’s basis vectors to vary between recordings and
patients because of the high dimensional and complex physiological system reduced
to F coefficients. Thus, an initialization of W with general basis vectors is not
a reliable option, and W is initialized with uniformly distributed random positive
numbers in (0, 1) instead. However, as opposed to audio signal processing, prior
information on the source activations H is available. This is the measured airflow V̇ ,
which flows through the patients’ airways. A positive flow denotes inspiration and
negative values expiration. Note that for ventilated patients, the ventilator support
shapes V̇ significantly, and it is well-known that there is a high prevalence of patient-
ventilator asynchrony under assisted ventilation [20]. Therefore, the airflow is only a
rough approximation of the source activations, because in V̇ the timing and waveform
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may differ from the sEMG activity. Still, it proved beneficial to initialize the matrix H
by

H(0) =
[
h
(0)
in ,h

(0)
ex

]>
∈ R2×T

≥0 (6)

with the initial source activation vector of inspiration

h
(0)
in =

{
V̇ if V̇ > 0
0 else

+ ν1 (7)

and the initialization of expiration

h(0)
ex =

{
|V̇ | if V̇ < 0
0 else

+ ν2, (8)

where ν1,ν2 ∈ RT
≥0 are random nonnegative vectors drawn from the uniform

distribution U(0,E{|V̇ |}/4).
Choosing K = 2 in the multi-channel case goes hand in hand with the assumption

that

denv
i,j ≈ win

i,jhin + wex
i,jhex with win

i,j , w
ex
i,j ≥ 0. (9)

Thus, both sources can project different spectral features onto each recording channel,
represented in the basis vectors of the matrix

W = [win,wex] =

 win
1,1 wex

1,1
...

...
win

n,m wex
n,m

 ∈ RF×2
≥0 . (10)

This assumption is physiologically valid if all inspiratory muscles work synchronously,
as well as all expiratory ones. It is also valid if mainly one muscle is dominant
during inspiration or expiration in all channels. Additionally, it is robust against
short irregularities because the envelopes of the wavelet bands are used and the
optimization is performed on multiple breathing cycles. On the other hand, this
approach assumes stationary source properties and no crosstalk by other muscles
groups than the respiratory ones.

2.3. Evaluation of separation results

This work targets the estimation of the inspiratory and expiratory source activation
primitives. For quantitative evaluation, the separation results hin and hex are
compared to the two references rin and rex. Due to the arbitrary scaling of the BSS
results, both should be similar up to a scaling factor. In the multi-channel case, the
similarity

rin,j ≈ αin,jhin and rex,j ≈ αex,jhex (11)

is assessed for all channels j = 1, . . . ,m with the same two source activation
primitives but channel-specific reference signals and scaling factors. Three evaluation
measures are defined to quantify different properties of the separation results. All
three are independent of absolute signal amplitudes. This section first describes an
approach for determining the scaling factors in eq. (11). After that, the three utilized
performance measures and the generation of multiple simulation-based test settings are
explained. The latter includes the construction of the corresponding reference signals.
Subsequently, we propose an approach to evaluating the algorithm’s performance on
clinical data.
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2.3.1. Scaling factors. An inherent property of the NMF algorithm is that the scaling
of basis and activation vectors is arbitrary. To determine a physically meaningful
scaling, we assume an instantaneous mixture of the sources and specify scaling factors
such that the linear combination of both estimated primitives

senvj ≈ αin,jhin + αex,jhex with j = 1, . . . ,m (12)

approximates the total respiratory muscle activity. The envelope signal senvj ∈ RT
≥0

represents the superposition of all contributing respiratory muscle activities measured
at jth channel. The lower branch of fig. 1 illustrates the process of calculating senvj

based on the thresholded SWT coefficients. Applying the inverse stationary wavelet
transform (ISWT) to the modified coefficient vectors of jth channel reconstructs the
sEMG signal with suppressed cardiac artifacts

sEMG
j = ISWT

{
dEMG
1,j , . . . ,dEMG

n,j ,0
}
∈ RT . (13)

All samples of the highest approximation coefficient an are set to zero, assuming
they do not contribute to the sEMG activity. For clarity, the difference between the
noisy recording sj and sEMG

j corresponds to cardiac activity and other low-frequency
disturbances. The sEMG envelope of jth channel

senvj = env
(
sEMG
j

)
∈ RT

≥0, (14)

is calculated in the same way as the envelopes of wavelet bands in eq. (3). What is
essential here is that senv1 , . . . , senvm are independent of the BSS and still contain a mix
of muscle activities. Additionally, they have a physiologically interpretable scale and
unit. For each channel, two scaling factors in eq. (12) are determined by minimizing
the squared error

αin,j , αex,j = argmin ||senvj − (αin,jhin + αex,jhex)||22 (15)

with αin,j , αex,j ≥ 0. The implementation of the nonnegative least squares
optimization is based on a FORTRAN solver published in [46], which satisfies the
Karush-Kuhn-Tucker conditions. The approximation in eq. (12) assumes that the
instantaneous mixture of the inspiratory and expiratory activation primitives fully
represents the activity of all recruited respiratory muscles measured at all channels.
This is a strong assumption, which could be violated by the nonlinear sEMG signal
generation, and the presence of non-respiratory crosstalk.

2.3.2. Evaluation measures. Schobben et al. [47] proposed the distortion of h to
measure the distance of the separated source signal h compared to its reference r by

Edist(h) = 10 log

(
E
{

(r− αh)2
}

E {r2}

)
(dB), (16)

which quantifies the relative signal power of the residuals with α = E{r2}/E{h2}.
This first measure Edist considers the error of the BSS results. Other works quantified
the separation performance by calculating the correlation [10], [11], [14], [37]. Hence,
the second measure compares the source signal with its reference by

Ecorr(h) = fcorr(r,h), (17)

where fcorr is the Pearson correlation coefficient.
We define a third measure for evaluating the separation success, which only

considers an application-specific objective of the proposed algorithm: the separation
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of inspiratory and expiratory activity. Therefore, each separated source signal’s
mean amplitude during inspiration fin(h) and during expiration fex(h) are compared.
This requires the temporal segmentation of inspiration and expiration. Ideally, the
source hin has a high inspiratory-to-expiratory-ratio

Erat(hin) = 10 log

(
fin(hin)

fex(hin)

)
(dB), (18)

whereas hex has a high expiratory-to-inspiratory-ratio

Erat(hex) = 10 log

(
fex(hex)

fin(hex)

)
(dB). (19)

Due to the ventilation context, eqs. (16) to (19) are calculated breath-wise and
averaged over all breathing cycles, respectively.

2.3.3. Before-and-after comparison. The mixed sEMG envelopes senvj of each
channel j = 1, . . . ,m obtained from eq. (14) represent the activity of all contributing
muscles without cardiac artifacts. Therefore, they can be used to evaluate whether and
to what extent the separation has increased the similarity to the references. They serve
as a baseline for the separation success and allow a before-and-after comparison with
all evaluation measures in section 2.3.2. The improvement induced by the separation
of the kth source projected to the jth channel can be assessed by the distortion
improvement

∆Ek,j
dist = Edist(s

env
j , rk,j)− Edist(hk, rk,j), (20)

the correlation improvement

∆Ek,j
corr = −

(
Ecorr(s

env
j , rk,j)− Ecorr(hk, rk,j)

)
, (21)

and the amplitude ratio improvement

∆Ek,j
rat = −

(
Erat(s

env
j )− Erat(hk)

)
(22)

with k ∈ {in, ex}. We define eqs. (20) to (22) in a way that ∆E > 0 indicates an
improvement.

2.3.4. Validation on simulated sEMG signals. The overall validation procedure with
simulated sEMG signals is illustrated in fig. 3. It is divided into three parts: First,
test and reference signals are generated. The next phase identifies the respiratory
activation primitives and reconstructs the mixed sEMG signals with suppressed
cardiac artifacts. The third phase uses the ground truth signals, the separation results,
the mixed sEMG envelopes and the introduced evaluation and improvement measures
(sections 2.3.2 and 2.3.3) to assess the separation performance.

The generation of multiple test settings for extensive verification of different
scenarios is based on:

• Subsets of active muscles: Employing the sEMG simulation model, explained in
section 2.1.2, provides the individual contributions of four different muscle groups
(DI, EI, II and RA). Superposing the simulated surface potentials in various
combinations generates different recruitment patterns. These patterns simulate
patients who recruit only specific muscles for respiration and include cases where
inspiration or expiration is passive. Naturally, passive inspiration is only possible
for ventilated patients. The contribution of non-contracting muscles is assumed
to be zero. In total, 15 different recruitment patterns are simulated.
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inspiratory muscles
Min ⊆ {DI,EI}

expiratory muscles
Mex ⊆ {RA, II}
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artifacts
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cardiac artifact removal and
feature extraction eqs. (2) to (4)

cardiac artifact removal and
feature extraction eqs. (2) to (4)

senvA senvBmixed sEMG envelope signals eq. (22)
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improvement
∆E
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Figure 3: Overview of the validation procedure. In the simulation phase, the sEMG
model described in section 2.1.2 is used to simulate inspiratory and expiratory surface
potentials at different electrode positions. Figure 1 illustrates the modeled muscles
and channel configurations. Based on this, the ground truth is calculated, and
subsequently, the signals are mixed and contaminated with artificial cardiac artifacts
and noise. In this stage, varying muscle recruitment patterns, channel configurations,
and SNRs generate different test signals, simulating real noisy recordings. In
the following phase, signal processing and separation are applied as described in
section 2.2. In addition to the activation primitives, the mixed sEMG signal is
reconstructed, and its envelope is calculated. Finally, the results before and after
BSS are evaluated and compared using the references and the assessment measures
described in sections 2.3.2 and 2.3.3.
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• Configurations of channels: Three configurations, only channel A, only channel B,
and both are chosen. The single-channel configurations imitate the scenario in
which disturbances corrupt one channel or only one channel is recorded.

• Signal-to-noise ratios (SNR): White noise is added in six different SNRs from
−3 dB to 12 dB with

SNR = 10 log

(
E{EMG2}
E{noise2}

)
(dB). (23)

This range imitates the amplitudes of the clinical data.

Artificial cardiac artifacts are added to each generated signal, as explained in
section 2.1.2.

When defining appropriate references for the source activation primitives, some
assumptions have to be made, because these inspiratory and expiratory primitives are
virtual source signals which are not used or acquired in the employed sEMG simulation
model. For this reason, the reference signals are formed based on the simulated surface
potentials ssimM,j associated with the respective source and channel. More precisely, the
references for each channel j ∈ {A,B} and each source k ∈ {in, ex} are obtained from

rk,j = env
(
ssimk,j

)
= env

(∑
Mk

ssimMk,j

)
, (24)

where Min ⊆ {DI,EI} and Mex ⊆ {RA, II} are the muscles recruited in the considered
test dataset. The reference surface potentials are without additional cardiac artifacts,
thus no removal in the wavelet domain is required. In conclusion, the reference signals
in eq. (24) correspond exactly to the envelopes of the surface potentials we would
measure without crosstalk, cardiac artifacts, or noise. It is noteworthy that we do
not explicitly evaluate the removal of cardiac artifacts. However, if artifact residuals
are still present in the separated signals, this also leads to a degraded performance
evaluation because the similarity to the reference decreases.

2.3.5. Validation on clinical sEMG signals. The proposed procedure is also applied to
twelve clinical sEMG datasets. Despite the lack of ground truth, a limited quantitative
evaluation is possible. Therefore, this work attempts to use the transdiaphragmatic
pressure pdi [48] to evaluate the clinical signals’ separation success. The pressure pdi
is an accepted clinical monitor for the patient’s breathing behavior. Negative strokes,
compared to the baseline pressure, indicate diaphragmatic activity. However, it is
an invasive and error-prone method and requires adequate catheter positioning in
the esophagus and stomach [49]. Cardiac artifacts also contaminate pdi but can be
removed using a template subtraction approach [50].

For quantitative validation, two clinical experts have segmented active
inspirations in pdi. Meanwhile, they were blinded to the sEMG recordings. The
intersection of both experts’ segmentations serves as a reference for applying eqs. (18)
and (19). Consequently, the measure Erat can be calculated for the separation results
of each patient, channel and source as explained in section 2.3.2.

3. Results

This section presents the obtained source separation results. At first, the simulated
surface potentials are shown and subsequently used in the second part for the proposed
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Figure 4: Simulated sEMG signals. The upper row visualizes the presumed muscle
load curves in percent of the maximum voluntary contraction level (MVC) for the
diaphragm ( DI), abdominal muscles ( RA), external ( EI), and internal
( II) intercostal muscles (relative values from 0 to 1, with 1 indicating maximum
voluntary contraction). The second and third plot show the simulated surface
potentials ssimM,A and ssimM,B for M ∈ {DI,RA,EI, II}. The scheme in fig. 1 illustrates
the electrode positions corresponding to channel A and B. The bottom row shows
the simulated airflow obtained from solving eq. (1), used for initializing the activation
matrix H as stated in eq. (6).

procedure’s quantitative validation. Finally, the algorithm is applied to clinical
datasets, and the results are evaluated based on expert annotations.

3.1. Separation of sEMG simulations

Figure 4 shows the employed surface potential simulations of the four most crucial
respiratory muscle groups. The muscle load curves (first row) picture that the muscles
are not contracting entirely synchronously in our simulation setup. Especially, the
activity onset and offset are not the same for the inspiratory muscles Min = {DI,EI}
nor for the expiratory muscles Mex = {RA,EI}. This test setup provides a roughly
realistic breathing pattern with reasonable complexity regarding the demanded BSS.
Due to proximity, DI and RA are most prominent in channel A, whereas EI and II
show large amplitudes in channel B. On the other hand, all muscles contribute to
both channels. For example, the crosstalk of DI and RA in channel B is significant
due to the muscles’ size and large electrode distances. As explained in section 2.3.4,
multiple test recordings with varying recruitment patterns are generated from the
surface potentials in fig. 4.

Figure 5 presents the results of the before-and-after comparison and evaluated
improvement measures, described in section 2.3.2. The scatter and the box plots
validate the improvement of Edist and Ecorr by applying BSS for most samples. There
are some samples where Edist(h) ≈ Edist(s

env) or Ecorr(h) ≈ Ecorr(s
env), which implies

that the separation was not entirely successful, but the separation results are not worse
than the simulated mixed signals. Nevertheless, the source separation algorithm can
improve the distortion Edist for most samples. The correlation has neither improved
nor deteriorated in the denoising case as ∆Ecorr ≈ 0 for almost all samples of all SNRs.
Here, only inspiratory or expiratory muscles are active. Thus, the mixed signal senv
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Figure 5: Quantitative evaluation of BSS success using simulated sEMG signals.
The figure presents three different evaluation measures, from top to bottom:
distortion Edist, correlation Ecorr, and the success of separating inspiration and
expiration Erat. Single- and two-channel datasets are evaluated on different muscle
recruitment combinations with SNRs in −3 dB to 12 dB (see section 2.3.4). The left
column compares E(senv) (before) and E(h) (after). The right column summarizes
all samples in the corresponding improvement measures ∆E for increasing SNRs.
These plots distinguish between the results referring to, first, active inspiration
and expiration (separation case) and, secondly, only one active source (denoising
case). In all plots, green areas indicate improvements for each validation measure.
Note that the definitions of Ecorr and Erat imply the more, the better relations,
whereas the distortion Edist is defined oppositely. That causes the flipped background
categorization. The measure Erat is also evaluated for the clinical datasets ( ), as
explained in section 3.2. For this purpose, clinical experts have segmented the
respiratory phases based on invasive pneumatic recordings. They were blind to the
source separation results.
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(b) Channel B with four muscles active:
Min = {DI,EI} and Mex = {RA, II}
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(c) Channel A (first three rows) and B (last
three rows) with four muscles active: Min =
{DI,EI} and Mex = {RA, II}. As only
two sources are separated, all blue and all
orange lines are equal up to a scaling factor,
respectively.

Figure 6: Exemplary separation results on simulated sEMG recordings. This figure
shows the identified inspiratory ( hin) and expiratory ( hex) activation
primitives in single-channel (fig. 6a and fig. 6b) and two-channel (fig. 6c) setups.
The background of the first row in each panel shows the mixed sEMG envelope signal
( senv) according to eq. (14). The second and the third row compare both estimated
source activation primitives and their ground truth ( r) obtained from eq. (24),
respectively. The source signals hin and hex are scaled to fit senv according to eqs. (12)
and (15).

and the reference signal differ only by additive white noise. Since we compare the
signal envelopes, Ecorr(s

env) is already very high before separation and can hardly
be improved. However, if BSS successfully separates the source signal from noise,
the signal is denoised, and ∆Edist > 0 dB verifies improvement. In the separation
case, ∆Ecorr is widespread but mostly improved. This can be traced back to the broad
range of the initial correlation Ecorr(s

env), as to be seen in the associated scatterplot
in fig. 5. Regarding Erat, all samples fulfill Erat(h) > Erat(s

env) and Erat(h) > 0 dB,
which means that the goal of separating inspiration and expiration is successful in all
simulated settings. In all cases, the initialization of the matrix H using eq. (6) achieves
the mapping of hin and hex to the correct inspiratory and expiratory reference signals.
Thus, no additional source matching step is necessary, indicating that an airflow-based
initialization can solve the standard mapping problem of NMF in this setup.
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Figure 6 shows three examples for separating simulated sEMG recordings: Two
single-channel and one two-channel setting. In all cases, SNR = 3 dB is chosen. In
fig. 6a, only the DI and RA are separated. Here, the separation is of high quality, and
the inspiratory reference signal can be reconstructed. The estimated source hex slightly
varies because it contains most of the added noise. The results of the second example
in fig. 6b are similarly accurate, although the NMF algorithm partially attributes
the noise to hin. Here, the surface potentials of all muscle groups contribute to the
sEMG signal. However, EI and II are dominant in channel B, as shown in fig. 4. The
same recruitment pattern, with all muscles being active, is shown in fig. 6c, but here,
both channels are used. Again, the separation is effective, and the separated sources
resemble the references. However, the estimated primitives in figs. 6b and 6c differ
even though exactly the same simulated signal was used for channel B. In fig. 6c,
the deviation of the shape of hex to its reference is more significant than for hin,
suggesting that the noise is mapped to the expiratory source. This example with
multiple channels illustrates that the identified sources are a compromise between all
recordings.

The utilized implementation is not performance optimized and runs on a normal
desktop PC (i5-8350U CPU). The average run time of the entire algorithm on the
simulation data per 30 s signal sections is 0.752 s in the single-channel case and 0.998 s
in the two-channel case.

3.2. Separation of clinical sEMG datasets

Figure 7 illustrates four single-channel examples obtained from three different patients.
In all cases, the algorithm could separate two alternating sources. Except for some
minor differences, the estimated inspiration primitive hin correlates with the negative
swings in the invasively measured transdiaphragmatic pressure pdi. We conclude that
the two sources are matched correctly only by the initialization based on the airflow V̇ .

With two recorded channels of good quality, one can use both for the separation.
Figure 8 presents examples obtained from four patients. The datasets differ regarding
the sEMG recordings and the flow curves, caused by respiratory activity of the
patients and the ventilatory support. As the amplitude of the separated source
activation primitives is arbitrary, hin and hex are scaled to fit the mixed sEMG
signal envelopes senvA and senvB , respectively. We conclude that the restriction to
only two sources is reasonable for all recordings (figs. 7 and 8) since the linear
combination of both estimated activation primitives reproduces both mixed signal
envelopes appropriately. Like in the single-channel case, the results in the multi-
channel case are plausible: The negative strokes in pdi match the inspiratory source
activation primitive hin for all patients. The dataset in fig. 8a is especially noticeable
because the airflow and the detected breaths do not match completely. The likely
explanation is patient-ventilator-asynchrony [20]–[22]. Once more, the initialization
with the airflow facilitates the source mapping. Additionally, in the case of asynchrony,
the algorithm can find additional active or inactive breaths, and the acquired results
are reasonable according to the invasively measured pressure pdi. The differences
of single- and two-channel cases can be examined, when comparing figs. 7c and 8d,
showing the single- and two-channel results for the same recording. In fig. 8d, the
estimated activation primitives are smoother, and the two sources are separated more
clearly than in the single-channel cases. Furthermore, the processed clinical datasets
show no disturbing cardiac artifact residuals, neither in the mixed signal envelopes
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Figure 7: Separation results on two clinical sEMG datasets (single-channel).
One differential sEMG recording yields the separated inspiratory ( hin) and
expiratory ( hex) activation primitives. The top row examples (figs. 7a and 7b)
are recorded from different patients and electrode positions. At the top, the airflow
signal V̇ is given, used for initializing the source activation primitives. The second
row shows the separation results, as well as the mixed signal envelope with suppressed
cardiac artifacts ( senv) obtained from eq. (12). The primitives are scaled according
to eqs. (12) and (15). The invasively measured transdiaphragmatic pressure pdi is given
at the bottom. In the latter, negative strokes indicate the patient’s inspiratory effort.
The left and right plot in fig. 7c correspond to the same patient and the same time
segment of the recording, but differ regarding the utilized sEMG channel. The results
of both single-channel cases can be compared to results in fig. 8d, where the same
recording in a two-channel scenario is processed.

nor in the separated source activation primitives. Consequently, the cardiac artifact
removal performed robustly for all patients and preserved the sEMG wavelet spectrum,
such that BSS can still be successful.

For each patient, channel, and source in figs. 7 and 8 and six additional patients,
the measure Erat is calculated as explained in section 2.3.5. The blue circles in the
bottom left plot of fig. 5 show the results. We can make two observations: First, the
proposed procedure improves the ratio of both sources Erat in all cases. Second, the
validation based on simulated sEMG signals reflects the true measurements properly
because the outcome of Erat is in the same range of values.
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Figure 8: Separation results on two-channel clinical sEMG datasets. The subfigures
present the separation results of four different patients with varying breathing
patterns. In all datasets, two sEMG recording channels are available. The rows
from top to bottom show the airflow V̇ , the mixed sEMG signal envelopes ( senv)
according to channel A and channel B obtained from eq. (12), and finally, the
transdiaphragmatic pressure pdi. Again, the separated source activation primitives
for inspiration ( hin) and expiration ( hex) are plotted, where the signals
in both rows are equal, up to the scaling factors obtained from eqs. (12) and (15).
Negative strokes in the invasively measured transdiaphragmatic pressure indicate the
patient’s inspiratory effort.

4. Conclusion and outlook

In this article, we have proposed a new method for separating inspiratory and
expiratory activity in respiratory surface EMG recordings of patients under mechanical
ventilation. The presented algorithm combines standard tools for cardiac artifact
removal and BSS. The separation procedure performs robust and without any
tuning, training data, or prior knowledge for different patients. A solution for the
common problem of initialization and source matching is proposed, using the recorded
ventilatory airflow. The proposed algorithm is computationally efficient and applicable
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to single-channel and low-density sEMG recordings of the respiratory muscles.
For the quantification of separation success, three evaluation measures are applied

on various sEMG simulations with different signal-to-noise ratios. BSS improved or
maintained the three quantities in all test datasets and SNRs. Both the separation
and the denoising cases were successful, implying that the proposed algorithm can
be applied to respiratory sEMG recordings, regardless of whether active or passive
expiration is present in the data. Although there is no ground truth for the separated
clinical sEMG datasets, the results appear realistic. Based on the transdiaphragmatic
pressure and two experts’ segmentations, we have shown that the ratio of the
inspiratory-to-expiratory signal power significantly improves for all patients. In
simulated and clinical datasets, the cardiac artifact removal was successful for this
application, because no cardiac artifact residuals disturb the envelopes or separated
source activation primitives. For the simulated signals, the results confirm that the
procedure correctly preserves the sEMG signal’s energy because the amplitudes of the
mixed envelope and the references are similar.

This paper makes several assumptions about the relation between the estimated
source signals, generated references, mixed sEMG signal envelopes, and derived
wavelet bands. In the underdetermined case, some of these assumptions enabled to
solve the source separation problem, and in multi-channel settings, they simplify the
separation and potentially compress information. For example, choosing the NMF
as BSS algorithm implicitly requires the synchronous activation of each source in all
wavelet bands of all channels. On the other hand, estimating only two sources is
a strong simplification that might not be sufficient in other datasets. Nevertheless,
we have shown that this provides robust results for all tested datasets. Additionally,
the representation of the patient’s respiratory muscle activity, condensed to only two
primitives, could be beneficial in clinical routines because it facilitates interpretation.
Especially if only the patient’s inspiratory effort is of interest, the algorithm has the
potential to fuse information of two or more recordings. We have shown clinical
examples where reasonable interpretation of the mixed sEMG envelopes would not
be possible, whereas the separation results give insight into the patient’s breathing
activity.

We have made two strong assumptions during the validation. First, eq. (11)
implicitly assumes that both references rin,A and rin,B are equal up to a scaling
factor. The same applies to the expiratory references, but it is not precisely accurate
in either case, in none of the simulated two-channel settings. That means the proposed
algorithm never had a chance to reproduce all references of multiple channels exactly.
Instead, estimated primitives resembling both references as much as possible would
be the best outcome. Furthermore, from eqs. (11) and (12) follows that the sum
of rin and rex should approximate senv (of both channels). Even if cardiac artifacts
are neglected, that is also inaccurate in the simulated settings because white noise
was added in advance. Thus, excellent separation results that almost fulfill eq. (12)
could not match the reference signals precisely because the algorithm maps the noise
to one or both estimated source activations. Thus, very good separation results that
almost fulfilled eq. (12) could not exactly match the reference signals, because the
added noise is mapped to one or both estimated source activations. In real data,
this might not be a drawback, but it is more difficult to achieve good results in the
validation. However, both inaccurate assumptions make the data in the performance
evaluation more realistic. And despite the limitations, all evaluation measures showed
improvements in test datasets, and we conclude the proposed separation procedure



REFERENCES 21

can be rated as a success.
An open question is the algorithm’s performance on long-term measurements,

where the source properties might change over time due to varying breathing behavior
and muscle recruitment. Furthermore, clinical applications usually require real-time
procedures. For addressing both challenges, an online implementation would be
necessary [51], [52].
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